File size: 1,302 Bytes
acda6c7 3601eff acda6c7 3601eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
def calculate_score(image, text):
labels = text.split(";")
labels = [l.strip() for l in labels]
labels = list(filter(None, labels))
if len(labels) == 0:
return dict()
inputs = processor(text=labels, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image.detach().numpy()
results_dict = {
label: score / 100.0 for label, score in zip(labels, logits_per_image[0])
}
return results_dict
if __name__ == "__main__":
cat_example = [
"cat.jpg",
"a cat stuck in a door; a cat in the air; a cat sitting; a cat standing; a cat is entering the matrix; a cat is entering the void",
]
demo = gr.Interface(
fn=calculate_score,
inputs=["image", "text"],
outputs="label",
examples=[cat_example],
allow_flagging="never",
description="# CLIP Score",
article="Calculate the [CLIP](https://openai.com/blog/clip/) score of a given image and text",
cache_examples=True,
)
demo.launch()
|