initial commit
Browse files- app.py +24 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import CLIPProcessor, CLIPModel
|
3 |
+
|
4 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
|
5 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
6 |
+
|
7 |
+
|
8 |
+
def calculate_score(image, text):
|
9 |
+
labels = text.split(';')
|
10 |
+
labels = [l.strip() for l in labels]
|
11 |
+
labels = list(filter(None, labels))
|
12 |
+
if len(labels) == 0 :
|
13 |
+
return dict()
|
14 |
+
inputs = processor(text=labels, images=image, return_tensors="pt", padding=True)
|
15 |
+
outputs = model(**inputs)
|
16 |
+
logits_per_image = outputs.logits_per_image.detach().numpy()
|
17 |
+
|
18 |
+
results_dict = {label:score/100.0 for label,score in zip(labels, logits_per_image[0])}
|
19 |
+
return results_dict
|
20 |
+
|
21 |
+
|
22 |
+
if __name__ == "__main__":
|
23 |
+
demo = gr.Interface(fn=calculate_score, inputs=["image", "text"], outputs="label")
|
24 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|