Spaces:
Runtime error
Runtime error
File size: 6,071 Bytes
0f8b4e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import sys
sys.path.append("flash3d")
from omegaconf import OmegaConf
import gradio as gr
import spaces
import torch
import torchvision.transforms as TT
import torchvision.transforms.functional as TTF
from huggingface_hub import hf_hub_download
from networks.gaussian_predictor import GaussianPredictor
from util.vis3d import save_ply
def main():
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
filename="config_re10k_v1.yaml")
model_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
filename="model_re10k_v1.pth")
cfg = OmegaConf.load(model_cfg_path)
model = GaussianPredictor(cfg)
device = torch.device("cuda:0")
model.to(device)
model.load_model(model_path)
pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug))
to_tensor = TT.ToTensor()
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(image):
image = TTF.resize(
image, (cfg.dataset.height, cfg.dataset.width),
interpolation=TT.InterpolationMode.BICUBIC
)
image = pad_border_fn(image)
return image
@spaces.GPU()
def reconstruct_and_export(image):
"""
Passes image through model, outputs reconstruction in form of a dict of tensors.
"""
image = to_tensor(image).to(device).unsqueeze(0)
inputs = {
("color_aug", 0, 0): image,
}
outputs = model(inputs)
# export reconstruction to ply
save_ply(outputs, ply_out_path, num_gauss=2)
return ply_out_path
ply_out_path = f'./mesh.ply'
css = """
h1 {
text-align: center;
display:block;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# Flash3D
"""
)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
gr.Examples(
examples=[
'./demo_examples/bedroom_01.png',
'./demo_examples/kitti_02.png',
'./demo_examples/kitti_03.png',
'./demo_examples/re10k_04.jpg',
'./demo_examples/re10k_05.jpg',
'./demo_examples/re10k_06.jpg',
],
inputs=[input_image],
cache_examples=False,
label="Examples",
examples_per_page=20,
)
with gr.Row():
processed_image = gr.Image(label="Processed Image", interactive=False)
with gr.Column(scale=2):
with gr.Row():
with gr.Tab("Reconstruction"):
output_model = gr.Model3D(
height=512,
label="Output Model",
interactive=False
)
# gr.Markdown(
# """
# ## Comments:
# 1. If you run the demo online, the first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s.
# 2. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. This is only an approximations and artefacts might show.
# 3. Known limitations include:
# - a black dot appearing on the model from some viewpoints
# - see-through parts of objects, especially on the back: this is due to the model performing less well on more complicated shapes
# - back of objects are blurry: this is a model limiation due to it being deterministic
# 4. Our model is of comparable quality to state-of-the-art methods, and is **much** cheaper to train and run.
# ## How does it work?
# Splatter Image formulates 3D reconstruction as an image-to-image translation task. It maps the input image to another image,
# in which every pixel represents one 3D Gaussian and the channels of the output represent parameters of these Gaussians, including their shapes, colours and locations.
# The resulting image thus represents a set of Gaussians (almost like a point cloud) which reconstruct the shape and colour of the object.
# The method is very cheap: the reconstruction amounts to a single forward pass of a neural network with only 2D operators (2D convolutions and attention).
# The rendering is also very fast, due to using Gaussian Splatting.
# Combined, this results in very cheap training and high-quality results.
# For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [CVPR article](https://arxiv.org/abs/2312.13150).
# """
# )
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image],
outputs=[processed_image],
).success(
fn=reconstruct_and_export,
inputs=[processed_image],
outputs=[output_model],
)
demo.queue(max_size=1)
demo.launch(share=True)
if __name__ == "__main__":
main()
|