File size: 6,071 Bytes
0f8b4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import sys
sys.path.append("flash3d")

from omegaconf import OmegaConf
import gradio as gr
import spaces
import torch
import torchvision.transforms as TT
import torchvision.transforms.functional as TTF
from huggingface_hub import hf_hub_download

from networks.gaussian_predictor import GaussianPredictor
from util.vis3d import save_ply


def main():
    if torch.cuda.is_available():
        device = "cuda:0"
    else:
        device = "cpu"

    model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d", 
                                     filename="config_re10k_v1.yaml")
    model_path = hf_hub_download(repo_id="einsafutdinov/flash3d", 
                                 filename="model_re10k_v1.pth")

    cfg = OmegaConf.load(model_cfg_path)
    model = GaussianPredictor(cfg)
    device = torch.device("cuda:0")
    model.to(device)
    model.load_model(model_path)

    pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug))
    to_tensor = TT.ToTensor()

    def check_input_image(input_image):
        if input_image is None:
            raise gr.Error("No image uploaded!")

    def preprocess(image):
        image = TTF.resize(
            image, (cfg.dataset.height, cfg.dataset.width), 
            interpolation=TT.InterpolationMode.BICUBIC
        )
        image = pad_border_fn(image)
        return image

    @spaces.GPU()
    def reconstruct_and_export(image):
        """
        Passes image through model, outputs reconstruction in form of a dict of tensors.
        """
        image = to_tensor(image).to(device).unsqueeze(0)
        inputs = {
            ("color_aug", 0, 0): image,
        }

        outputs = model(inputs)

        # export reconstruction to ply
        save_ply(outputs, ply_out_path, num_gauss=2)

        return ply_out_path
    
    ply_out_path = f'./mesh.ply'

    css = """
        h1 {
            text-align: center;
            display:block;
        }
        """

    with gr.Blocks(css=css) as demo:
        gr.Markdown(
            """
            # Flash3D
            """
            )
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                with gr.Row():
                    input_image = gr.Image(
                        label="Input Image",
                        image_mode="RGBA",
                        sources="upload",
                        type="pil",
                        elem_id="content_image",
                    )
                with gr.Row():
                    submit = gr.Button("Generate", elem_id="generate", variant="primary")

                with gr.Row(variant="panel"): 
                    gr.Examples(
                        examples=[
                            './demo_examples/bedroom_01.png',
                            './demo_examples/kitti_02.png',
                            './demo_examples/kitti_03.png',
                            './demo_examples/re10k_04.jpg',
                            './demo_examples/re10k_05.jpg',
                            './demo_examples/re10k_06.jpg',
                        ],
                        inputs=[input_image],
                        cache_examples=False,
                        label="Examples",
                        examples_per_page=20,
                    )

                with gr.Row():
                    processed_image = gr.Image(label="Processed Image", interactive=False)

            with gr.Column(scale=2):
                with gr.Row():
                    with gr.Tab("Reconstruction"):
                        output_model = gr.Model3D(
                            height=512,
                            label="Output Model",
                            interactive=False
                        )

        # gr.Markdown(
        # """
        #     ## Comments:
        #     1. If you run the demo online, the first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s.
        #     2. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. This is only an approximations and artefacts might show.
        #     3. Known limitations include:
        #     - a black dot appearing on the model from some viewpoints
        #     - see-through parts of objects, especially on the back: this is due to the model performing less well on more complicated shapes
        #     - back of objects are blurry: this is a model limiation due to it being deterministic
        #     4. Our model is of comparable quality to state-of-the-art methods, and is **much** cheaper to train and run.
        #     ## How does it work?
        #     Splatter Image formulates 3D reconstruction as an image-to-image translation task. It maps the input image to another image, 
        #     in which every pixel represents one 3D Gaussian and the channels of the output represent parameters of these Gaussians, including their shapes, colours and locations.
        #     The resulting image thus represents a set of Gaussians (almost like a point cloud) which reconstruct the shape and colour of the object.
        #     The method is very cheap: the reconstruction amounts to a single forward pass of a neural network with only 2D operators (2D convolutions and attention).
        #     The rendering is also very fast, due to using Gaussian Splatting.
        #     Combined, this results in very cheap training and high-quality results.
        #     For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [CVPR article](https://arxiv.org/abs/2312.13150).
        #     """
        # )

        submit.click(fn=check_input_image, inputs=[input_image]).success(
            fn=preprocess,
            inputs=[input_image],
            outputs=[processed_image],
        ).success(
            fn=reconstruct_and_export,
            inputs=[processed_image],
            outputs=[output_model],
        )

    demo.queue(max_size=1)
    demo.launch(share=True)


if __name__ == "__main__":
    main()