Spaces:
Runtime error
Runtime error
einsafutdinov
commited on
Commit
β’
0f8b4e3
1
Parent(s):
201e424
v0.01 demo
Browse files- app.py +157 -0
- demo_examples/bedroom_01.png +0 -0
- demo_examples/kitti_02.png +0 -0
- demo_examples/kitti_03.png +0 -0
- demo_examples/re10k_04.jpg +0 -0
- demo_examples/re10k_05.jpg +0 -0
- demo_examples/re10k_06.jpg +0 -0
- pre-requirements.txt +5 -3
- requirements.txt +16 -0
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append("flash3d")
|
3 |
+
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms as TT
|
9 |
+
import torchvision.transforms.functional as TTF
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
|
12 |
+
from networks.gaussian_predictor import GaussianPredictor
|
13 |
+
from util.vis3d import save_ply
|
14 |
+
|
15 |
+
|
16 |
+
def main():
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
device = "cuda:0"
|
19 |
+
else:
|
20 |
+
device = "cpu"
|
21 |
+
|
22 |
+
model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
|
23 |
+
filename="config_re10k_v1.yaml")
|
24 |
+
model_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
|
25 |
+
filename="model_re10k_v1.pth")
|
26 |
+
|
27 |
+
cfg = OmegaConf.load(model_cfg_path)
|
28 |
+
model = GaussianPredictor(cfg)
|
29 |
+
device = torch.device("cuda:0")
|
30 |
+
model.to(device)
|
31 |
+
model.load_model(model_path)
|
32 |
+
|
33 |
+
pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug))
|
34 |
+
to_tensor = TT.ToTensor()
|
35 |
+
|
36 |
+
def check_input_image(input_image):
|
37 |
+
if input_image is None:
|
38 |
+
raise gr.Error("No image uploaded!")
|
39 |
+
|
40 |
+
def preprocess(image):
|
41 |
+
image = TTF.resize(
|
42 |
+
image, (cfg.dataset.height, cfg.dataset.width),
|
43 |
+
interpolation=TT.InterpolationMode.BICUBIC
|
44 |
+
)
|
45 |
+
image = pad_border_fn(image)
|
46 |
+
return image
|
47 |
+
|
48 |
+
@spaces.GPU()
|
49 |
+
def reconstruct_and_export(image):
|
50 |
+
"""
|
51 |
+
Passes image through model, outputs reconstruction in form of a dict of tensors.
|
52 |
+
"""
|
53 |
+
image = to_tensor(image).to(device).unsqueeze(0)
|
54 |
+
inputs = {
|
55 |
+
("color_aug", 0, 0): image,
|
56 |
+
}
|
57 |
+
|
58 |
+
outputs = model(inputs)
|
59 |
+
|
60 |
+
# export reconstruction to ply
|
61 |
+
save_ply(outputs, ply_out_path, num_gauss=2)
|
62 |
+
|
63 |
+
return ply_out_path
|
64 |
+
|
65 |
+
ply_out_path = f'./mesh.ply'
|
66 |
+
|
67 |
+
css = """
|
68 |
+
h1 {
|
69 |
+
text-align: center;
|
70 |
+
display:block;
|
71 |
+
}
|
72 |
+
"""
|
73 |
+
|
74 |
+
with gr.Blocks(css=css) as demo:
|
75 |
+
gr.Markdown(
|
76 |
+
"""
|
77 |
+
# Flash3D
|
78 |
+
"""
|
79 |
+
)
|
80 |
+
with gr.Row(variant="panel"):
|
81 |
+
with gr.Column(scale=1):
|
82 |
+
with gr.Row():
|
83 |
+
input_image = gr.Image(
|
84 |
+
label="Input Image",
|
85 |
+
image_mode="RGBA",
|
86 |
+
sources="upload",
|
87 |
+
type="pil",
|
88 |
+
elem_id="content_image",
|
89 |
+
)
|
90 |
+
with gr.Row():
|
91 |
+
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
92 |
+
|
93 |
+
with gr.Row(variant="panel"):
|
94 |
+
gr.Examples(
|
95 |
+
examples=[
|
96 |
+
'./demo_examples/bedroom_01.png',
|
97 |
+
'./demo_examples/kitti_02.png',
|
98 |
+
'./demo_examples/kitti_03.png',
|
99 |
+
'./demo_examples/re10k_04.jpg',
|
100 |
+
'./demo_examples/re10k_05.jpg',
|
101 |
+
'./demo_examples/re10k_06.jpg',
|
102 |
+
],
|
103 |
+
inputs=[input_image],
|
104 |
+
cache_examples=False,
|
105 |
+
label="Examples",
|
106 |
+
examples_per_page=20,
|
107 |
+
)
|
108 |
+
|
109 |
+
with gr.Row():
|
110 |
+
processed_image = gr.Image(label="Processed Image", interactive=False)
|
111 |
+
|
112 |
+
with gr.Column(scale=2):
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Tab("Reconstruction"):
|
115 |
+
output_model = gr.Model3D(
|
116 |
+
height=512,
|
117 |
+
label="Output Model",
|
118 |
+
interactive=False
|
119 |
+
)
|
120 |
+
|
121 |
+
# gr.Markdown(
|
122 |
+
# """
|
123 |
+
# ## Comments:
|
124 |
+
# 1. If you run the demo online, the first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s.
|
125 |
+
# 2. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. This is only an approximations and artefacts might show.
|
126 |
+
# 3. Known limitations include:
|
127 |
+
# - a black dot appearing on the model from some viewpoints
|
128 |
+
# - see-through parts of objects, especially on the back: this is due to the model performing less well on more complicated shapes
|
129 |
+
# - back of objects are blurry: this is a model limiation due to it being deterministic
|
130 |
+
# 4. Our model is of comparable quality to state-of-the-art methods, and is **much** cheaper to train and run.
|
131 |
+
# ## How does it work?
|
132 |
+
# Splatter Image formulates 3D reconstruction as an image-to-image translation task. It maps the input image to another image,
|
133 |
+
# in which every pixel represents one 3D Gaussian and the channels of the output represent parameters of these Gaussians, including their shapes, colours and locations.
|
134 |
+
# The resulting image thus represents a set of Gaussians (almost like a point cloud) which reconstruct the shape and colour of the object.
|
135 |
+
# The method is very cheap: the reconstruction amounts to a single forward pass of a neural network with only 2D operators (2D convolutions and attention).
|
136 |
+
# The rendering is also very fast, due to using Gaussian Splatting.
|
137 |
+
# Combined, this results in very cheap training and high-quality results.
|
138 |
+
# For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [CVPR article](https://arxiv.org/abs/2312.13150).
|
139 |
+
# """
|
140 |
+
# )
|
141 |
+
|
142 |
+
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
143 |
+
fn=preprocess,
|
144 |
+
inputs=[input_image],
|
145 |
+
outputs=[processed_image],
|
146 |
+
).success(
|
147 |
+
fn=reconstruct_and_export,
|
148 |
+
inputs=[processed_image],
|
149 |
+
outputs=[output_model],
|
150 |
+
)
|
151 |
+
|
152 |
+
demo.queue(max_size=1)
|
153 |
+
demo.launch(share=True)
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
main()
|
demo_examples/bedroom_01.png
ADDED
demo_examples/kitti_02.png
ADDED
demo_examples/kitti_03.png
ADDED
demo_examples/re10k_04.jpg
ADDED
demo_examples/re10k_05.jpg
ADDED
demo_examples/re10k_06.jpg
ADDED
pre-requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
-
--extra-index-url https://download.pytorch.org/whl/
|
2 |
-
torch
|
3 |
-
torchvision
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
+
torch==2.2.2
|
3 |
+
torchvision
|
4 |
+
torchaudio
|
5 |
+
xformers==0.0.25.post1
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
einops
|
2 |
+
huggingface-hub>=0.22.0
|
3 |
+
imageio
|
4 |
+
matplotlib
|
5 |
+
safetensors
|
6 |
+
scipy
|
7 |
+
timm
|
8 |
+
tqdm
|
9 |
+
wandb
|
10 |
+
neptune
|
11 |
+
scikit-image
|
12 |
+
plyfile
|
13 |
+
omegaconf
|
14 |
+
jaxtyping
|
15 |
+
gradio
|
16 |
+
spaces
|