Spaces:
Running
Running
File size: 12,276 Bytes
b20af9f 833fa47 b20af9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import torch
import torch.nn.functional as F
from torch import nn
import yaml
import argparse
from modules.BEATs.BEATs import BEATs, BEATsConfig
from modules.AudioToken.embedder import FGAEmbedder
from modules.CLIPSeg.clipseg_for_audio import CLIPSeg
from modules.mask_utils import ImageMasker, FeatureMasker
from transformers import AutoTokenizer
class ACL(nn.Module):
def __init__(self, conf_file: str, device: str):
"""
Audio-Grounded Contrastive Learning (ACL) model.
Args:
conf_file (str): Path to the configuration file.
device (str): Device to move the model to.
"""
super(ACL, self).__init__()
# Get configuration
with open(conf_file) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
self.args = argparse.Namespace()
self.args.model = argparse.Namespace(**config['model'])
self.args.clip_embedding_dim = config['clip_conf'][self.args.model.clip]['embedding_dim']
self.args.clip_name = config['clip_conf'][self.args.model.clip]['name']
self.pretrain = argparse.Namespace(**config['pretrain'])
self.args.audio_proj = argparse.Namespace(**config['fga_conf'][self.args.model.audio_proj])
# Init audio encoder
checkpoint = torch.load(self.pretrain.audio_backbone)
cfg = BEATsConfig(checkpoint['cfg'])
self.audio_backbone = BEATs(cfg)
# Text Tokenizer for placeholder prompt
self.tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined")
# Init audio projection layer
self.audio_proj = FGAEmbedder(input_size=self.args.audio_proj.input_size * 3,
output_size=self.args.audio_proj.output_size)
# Init audio-visual grounder (Grounder: CLIPSeg)
self.av_grounder = CLIPSeg.from_pretrained("CIDAS/clipseg-rd64-refined")
# Init maskers
self.masker_i = ImageMasker(10.0, 14.0, 1.0)
self.masker_f = FeatureMasker(0.5, 0.07)
# Load weights
self.audio_backbone.load_state_dict(checkpoint['model'])
self.audio_backbone.predictor = None
if self.pretrain.audio_proj is not None:
self.audio_proj.load_state_dict(torch.load(self.pretrain.audio_embedder))
# Set device
self.device = device
self.audio_backbone.to(device=self.device)
self.av_grounder.to(device=self.device)
self.audio_proj.to(device=self.device)
self.masker_i.to(self.device)
self.masker_f.to(self.device)
def get_placeholder_token(self, prompt_text: str):
"""
Get placeholder token from prompt text
Args:
prompt_text (str): prompt text without '{}'
Returns:
CLIPTokenizerFast result with prompt text
"""
placeholder_token = self.tokenizer(prompt_text, return_tensors="pt").data['input_ids']
placeholder_token = F.pad(placeholder_token, (0, 77 - placeholder_token.shape[-1])).to(self.device)
return placeholder_token
def train(self, bool: bool = True):
"""
Set the module in training mode.
Args:
bool (bool): If True, set the module in training mode.
"""
super().train(bool)
self.av_grounder.requires_grad_(False)
self.audio_backbone.requires_grad_(False)
def encode_audio(self, audio: torch.Tensor, placeholder_token: torch.Tensor, pos: int,
prompt_size: int) -> torch.Tensor:
"""
Encode audio input into audio-driven embedding (Audio-Driven Embedder)
Args:
audio (torch.Tensor): Input audio tensor.
placeholder_token (torch.Tensor): Placeholder token for CLIP Text encoder.
pos (int): Position of audio token.
prompt_size (int): Size of the placeholder prompt.
Returns:
torch.Tensor: Audio-driven embeddings.
"""
audio_feat = self.audio_backbone.extract_features(audio)[1]
audio_token_emb = self.audio_proj(audio_feat).unsqueeze(1)
audio_driven_embedding = self.av_grounder.encode_audio(placeholder_token, audio_token_emb, pos,
prompt_size + audio_token_emb.shape[1])
return audio_driven_embedding
def encode_vision(self, image: torch.Tensor) -> torch.Tensor:
"""
Encode visual input and generate visual embeddings.
Args:
image (torch.Tensor): Input image tensor.
Returns:
torch.Tensor: Visual embeddings.
"""
vision_outputs = self.av_grounder.clip.vision_model(pixel_values=image,
output_attentions=None,
output_hidden_states=True,
return_dict=True)
pooled_output = self.av_grounder.clip.visual_projection(vision_outputs[1])
return pooled_output
def forward_decoder(self, image: torch.Tensor, embedding: torch.Tensor, resolution: int = 224) -> torch.Tensor:
"""
Forward pass of audio-visual grounder
Args:
image (torch.Tensor): Input image tensor.
embedding (torch.Tensor): Condition embedding tensor for grounder.
resolution (int): Resolution of the output.
ignore_indices (list): List of indices to ignore.
Returns:
torch.Tensor: Logits from the decoder.
"""
# step 1: forward the query images through the frozen CLIP vision encoder
vision_outputs = self.av_grounder.clip.vision_model(pixel_values=image,
output_attentions=None,
output_hidden_states=True,
return_dict=True)
hidden_states = vision_outputs.hidden_states
# we add +1 here as the hidden states also include the initial embeddings
activations = [hidden_states[i + 1] for i in self.av_grounder.extract_layers]
# step 2: compute conditional embeddings, either from text, images or an own provided embedding
# Audio injected embedding from input argument
# step 3: forward both the pooled output and the activations through the lightweight decoder to predict masks
decoder_outputs = self.av_grounder.decoder(
activations,
embedding,
output_attentions=None,
output_hidden_states=None,
return_dict=True,
)
logits = decoder_outputs.logits
if logits.ndim == 2:
logits = logits.unsqueeze(0).unsqueeze(1)
else:
logits = logits.unsqueeze(1)
B, c, h, w = image.shape
if (h, w) != (resolution, resolution):
logits = F.interpolate(logits, resolution, mode='bicubic')
return logits
def forward_module(self, image: torch.Tensor, embedding: torch.Tensor, resolution: int = 224,
force_comb: bool = False) -> torch.Tensor:
"""
Forward pass through the module.
Args:
image (torch.Tensor): Input image tensor.
embedding (torch.Tensor): Condition embedding tensor for grounder.
resolution (int): Resolution of the output tensor.
force_comb (bool): If True, force to get logits with all combination audio and image.
Returns:
torch.Tensor: Logits from the decoder.
"""
# N image, 1 embedding case -> [B_i, h, w]
if embedding.shape[0] != image.shape[0] and embedding.shape[0] == 1:
embeddings = embedding.repeat(image.shape[0], 1)
logits = self.forward_decoder(image, embeddings, resolution)
# N image, M embedding case -> [B_i, B_e, h, w]
elif embedding.shape[0] != image.shape[0] and embedding.shape[0] != 1 and image.shape[0] != 1 or force_comb:
logit_list = []
for i in range(embedding.shape[0]):
embeddings = embedding[i].unsqueeze(0).repeat(image.shape[0], 1)
logit_list.append(self.forward_decoder(image, embeddings, resolution))
logits = torch.cat(logit_list, dim=1)
# N image, N embedding or 1 image, N embedding -> [B_e, h, w]
else:
logits = self.forward_decoder(image, embedding, resolution)
return logits
def encode_masked_vision(self, image: torch.Tensor, embedding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, float, float]:
"""
Encode masked visual feature both image-level and feature-level.
Args:
image (torch.Tensor): Input image tensor.
embedding (torch.Tensor): Condition embedding tensor for grounder.
Returns:
tuple[torch.Tensor, torch.Tensor, float, float]: Feature masked embeddings, masked image embeddings, positive area, negative area.
"""
B, c, h, w = image.shape
maskclip_feat = self.av_grounder.get_pixels(image) # v^D: [B, c, h, w]
clipseg_mask = self.forward_module(image, embedding, h, force_comb=True) # M^G: [B, B, H, W]
# Area
area_matrix = self.masker_i(clipseg_mask).mean((2, 3))
positive_area = area_matrix.diagonal().mean()
negative_area = area_matrix.mean() - positive_area / B
# Feature level masker
feature_mask = F.interpolate(self.masker_f(clipseg_mask), maskclip_feat.shape[2])
# Image level masker
ind = torch.arange(B).to(image.device)
image_mask = self.masker_i(clipseg_mask[ind, ind].unsqueeze(1)) # Positive pair only
feature_masked_emb = torch.einsum('bchw,bnhw->bnc', maskclip_feat, feature_mask) / (feature_mask.sum() + 1e-6)
# step 1: forward the query images through the frozen CLIP vision encoder
masked_vision_outputs = self.av_grounder.clip.vision_model(pixel_values=image * image_mask,
output_attentions=None,
output_hidden_states=True,
return_dict=True)
masked_image_emb = self.av_grounder.clip.visual_projection(masked_vision_outputs[1])
return feature_masked_emb, masked_image_emb, positive_area, negative_area
def forward(self, image: torch.Tensor, embedding: torch.Tensor, resolution: int = 224) -> dict:
"""
Forward pass of ACL model.
Args:
image (torch.Tensor): Input image tensor.
embedding (torch.Tensor): Condition embedding tensor for grounder.
resolution (int): Resolution of the output tensor.
Returns:
dict: Output dictionary containing relevant tensors.
"""
if self.training:
# seg_logit = self.forward_module(image, embedding, resolution)
v_f, v_i, p_area, n_area = self.encode_masked_vision(image, embedding)
out_dict = {'v_f': v_f, 'v_i': v_i, 'p_area': p_area, 'n_area': n_area}
else:
seg_logit = self.forward_module(image, embedding, resolution)
heatmap = self.masker_i(seg_logit, infer=True)
out_dict = {'heatmap': heatmap}
return out_dict
def save(self, model_dir: str):
"""
Save model parameters to a file. (Only trainable parts)
Args:
model_dir (str): Directory to save the model.
"""
ckp = {'audio_proj': self.audio_proj.state_dict(), 'masker_i': self.masker_i.state_dict()}
torch.save(ckp, model_dir)
def load(self, model_dir: str):
"""
Load model parameters from a file. (Only trainable parts)
Args:
model_dir (str): Directory to load the model from.
"""
ckp = torch.load(model_dir, map_location=self.device)
self.audio_proj.load_state_dict(ckp['audio_proj'])
self.masker_i.load_state_dict(ckp['masker_i'])
|