Spaces:
Running
Running
File size: 9,757 Bytes
b20af9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from modules.FGA.atten import Atten
class FGA(nn.Module):
def __init__(self, vocab_size, word_embed_dim, hidden_ques_dim, hidden_ans_dim,
hidden_hist_dim, hidden_cap_dim, hidden_img_dim):
'''
Factor Graph Attention
:param vocab_size: vocabulary size
:param word_embed_dim
:param hidden_ques_dim:
:param hidden_ans_dim:
:param hidden_hist_dim:
:param img_features_dim:
'''
super(FGA, self).__init__()
print("Init FGA with vocab size %s, word embed %s, hidden ques %s, hidden ans %s,"
" hidden hist %s, hidden cap %s, hidden img %s" % (vocab_size, word_embed_dim,
hidden_ques_dim,
hidden_ans_dim,
hidden_hist_dim,
hidden_cap_dim,
hidden_img_dim))
self.hidden_ques_dim = hidden_ques_dim
self.hidden_ans_dim = hidden_ans_dim
self.hidden_cap_dim = hidden_cap_dim
self.hidden_img_dim = hidden_img_dim
self.hidden_hist_dim = hidden_hist_dim
# Vocab of History LSTMs is one more as we are keeping a stop id (the last id)
self.word_embedddings = nn.Embedding(vocab_size+1+1, word_embed_dim, padding_idx=0)
self.lstm_ques = nn.LSTM(word_embed_dim, self.hidden_ques_dim, batch_first=True)
self.lstm_ans = nn.LSTM(word_embed_dim, self.hidden_ans_dim, batch_first=True)
self.lstm_hist_ques = nn.LSTM(word_embed_dim, self.hidden_hist_dim, batch_first=True)
self.lstm_hist_ans = nn.LSTM(word_embed_dim, self.hidden_hist_dim, batch_first=True)
self.lstm_hist_cap = nn.LSTM(word_embed_dim, self.hidden_cap_dim, batch_first=True)
self.qahistnet = nn.Sequential(
nn.Linear(self.hidden_hist_dim*2, self.hidden_hist_dim),
nn.ReLU(inplace=True)
)
self.concat_dim = self.hidden_ques_dim + self.hidden_ans_dim + \
self.hidden_ans_dim + self.hidden_img_dim + \
self.hidden_cap_dim + self.hidden_hist_dim*9
self.simnet = nn.Sequential(
nn.Linear(self.concat_dim, (self.concat_dim)//2, bias=False),
nn.BatchNorm1d((self.concat_dim) // 2),
nn.ReLU(inplace=True),
nn.Linear((self.concat_dim)//2, (self.concat_dim)//4, bias=False),
nn.BatchNorm1d((self.concat_dim) // 4),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear((self.concat_dim)//4, 1)
)
# To share weights, provide list of tuples: (idx, list of connected utils)
# Note, for efficiency, the shared utils (i.e., history, are connected to ans and question only.
# connecting shared factors is not supported (!)
sharing_factor_weights = {4: (9, [0, 1]),
5: (9, [0, 1])}
self.mul_atten = Atten(util_e=[self.hidden_ans_dim, # Answer modal
self.hidden_ques_dim, # Question modal
self.hidden_cap_dim, # Caption modal
self.hidden_img_dim, # Image modal
self.hidden_hist_dim, # Question-history modal
self.hidden_hist_dim # Answer-history modal
],
sharing_factor_weights=sharing_factor_weights,
sizes=[100, # 100 Answers
21, # Question length
41, # Caption length
37, # 36 Image regions
21, # History-Question length
21 # History-Answer length
] # The spatial dim used for pairwise normalization (use force for adaptive)
, prior_flag=True,
pairwise_flag=True)
def forward(self, input_ques, input_ans, input_hist_ques, input_hist_ans, input_hist_cap,
input_ques_length, input_ans_length, input_cap_length, i_e):
"""
:param input_ques:
:param input_ans:
:param input_hist_ques:
:param input_hist_ans:
:param input_hist_cap:
:param input_ques_length:
:param input_ans_length:
:param input_cap_length:
:param i_e:
:return:
"""
n_options = input_ans.size()[1]
batch_size = input_ques.size()[0]
nqa_per_dial, nwords_per_qa = input_hist_ques.size()[1], input_hist_ques.size()[2]
nwords_per_cap = input_hist_cap.size()[1]
max_length_input_ans = input_ans.size()[-1]
assert batch_size == input_hist_ques.size()[0] == input_hist_ans.size()[0] == input_ques.size()[0] == \
input_ans.size()[0] == input_hist_cap.size()[0]
assert nqa_per_dial == input_hist_ques.size()[1] == input_hist_ans.size()[1]
assert nwords_per_qa == input_hist_ques.size()[2] == input_hist_ans.size()[2]
q_we = self.word_embedddings(input_ques)
a_we = self.word_embedddings(input_ans.view(-1, max_length_input_ans))
hq_we = self.word_embedddings(input_hist_ques.view(-1, nwords_per_qa))
ha_we = self.word_embedddings(input_hist_ans.view(-1, nwords_per_qa))
c_we = self.word_embedddings(input_hist_cap.view(-1, nwords_per_cap))
'''
q_we = batch x 20 x embed_ques_dim
a_we = 100*batch x 20 x embed_ans_dim
hq_we = batch*nqa_per_dial, nwords_per_qa, embed_hist_dim
ha_we = batch*nqa_per_dial, nwords_per_qa, embed_hist_dim
c_we = batch*ncap_per_dial, nwords_per_cap, embed_hist_dim
'''
self.lstm_ques.flatten_parameters()
self.lstm_ans.flatten_parameters()
self.lstm_hist_ques.flatten_parameters()
self.lstm_hist_ans.flatten_parameters()
self.lstm_hist_cap.flatten_parameters()
i_feat = i_e
q_seq, self.hidden_ques = self.lstm_ques(q_we)
a_seq, self.hidden_ans = self.lstm_ans(a_we)
hq_seq, self.hidden_hist_ques = self.lstm_hist_ques(hq_we)
ha_seq, self.hidden_hist_ans = self.lstm_hist_ans(ha_we)
cap_seq, self.hidden_cap = self.lstm_hist_cap(c_we)
'''
length is used for attention prior
'''
q_len = input_ques_length.data - 1
c_len = input_cap_length.data.view(-1) - 1
ans_index = torch.arange(0, n_options * batch_size).long().cuda()
ans_len = input_ans_length.data.view(-1) - 1
ans_seq = a_seq[ans_index, ans_len, :]
ans_seq = ans_seq.view(batch_size, n_options, self.hidden_ans_dim)
batch_index = torch.arange(0, batch_size).long().cuda()
q_prior = torch.zeros(batch_size, q_seq.size(1)).cuda()
q_prior[batch_index, q_len] = 100
c_prior = torch.zeros(batch_size, cap_seq.size(1)).cuda()
c_prior[batch_index, c_len] = 100
ans_prior = torch.ones(batch_size, ans_seq.size(1)).cuda()
img_prior = torch.ones(batch_size, i_feat.size(1)).cuda()
(ans_atten, ques_atten, cap_atten, img_atten, hq_atten, ha_atten) = \
self.mul_atten([ans_seq, q_seq, cap_seq, i_feat, hq_seq, ha_seq],
priors=[ans_prior, q_prior, c_prior, img_prior, None, None])
'''
expand to answers based
'''
ques_atten = torch.unsqueeze(ques_atten, 1).expand(batch_size,
n_options,
self.hidden_ques_dim)
cap_atten = torch.unsqueeze(cap_atten, 1).expand(batch_size,
n_options,
self.hidden_cap_dim)
img_atten = torch.unsqueeze(img_atten, 1).expand(batch_size, n_options,
self.hidden_img_dim)
ans_atten = torch.unsqueeze(ans_atten, 1).expand(batch_size, n_options,
self.hidden_ans_dim)
'''
combine history
'''
input_qahistnet = torch.cat((hq_atten, ha_atten), 1)
# input_qahistnet: (nqa_per_dial*batch x 2*hidden_hist_dim)
output_qahistnet = self.qahistnet(input_qahistnet)
# output_qahistnet: (nqa_per_dial*batch x hidden_hist_dim)
output_qahistnet = output_qahistnet.view(batch_size,
nqa_per_dial * self.hidden_hist_dim)
# output_qahistnet: (batch x nqa_per_dial*hidden_hist_dim)
output_qahistnet = torch.unsqueeze(output_qahistnet, 1)\
.expand(batch_size,
n_options,
nqa_per_dial * self.hidden_hist_dim)
input_qa = torch.cat((ans_seq, ques_atten, ans_atten, img_atten,
output_qahistnet, cap_atten), 2) # Concatenate last dimension
input_qa = input_qa.view(batch_size * n_options, self.concat_dim)
out_scores = self.simnet(input_qa)
out_scores = out_scores.squeeze(dim=1)
out_scores = out_scores.view(batch_size, n_options)
return out_scores |