File size: 8,171 Bytes
b20af9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# --------------------------------------------------------
# BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
# Github source: https://github.com/microsoft/unilm/tree/master/beats
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on VQGAN code bases
# https://github.com/CompVis/taming-transformers
# --------------------------------------------------------'

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as distributed

try:
    from einops import rearrange, repeat
except ImportError:
    pass


def l2norm(t):
    return F.normalize(t, p=2, dim=-1)


def ema_inplace(moving_avg, new, decay):
    moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))


def sample_vectors(samples, num):
    num_samples, device = samples.shape[0], samples.device

    if num_samples >= num:
        indices = torch.randperm(num_samples, device=device)[:num]
    else:
        indices = torch.randint(0, num_samples, (num,), device=device)

    return samples[indices]


def kmeans(samples, num_clusters, num_iters=10, use_cosine_sim=False):
    dim, dtype, device = samples.shape[-1], samples.dtype, samples.device

    means = sample_vectors(samples, num_clusters)

    for _ in range(num_iters):
        if use_cosine_sim:
            dists = samples @ means.t()
        else:
            diffs = rearrange(samples, 'n d -> n () d') \
                    - rearrange(means, 'c d -> () c d')
            dists = -(diffs ** 2).sum(dim=-1)

        buckets = dists.max(dim=-1).indices
        bins = torch.bincount(buckets, minlength=num_clusters)
        zero_mask = bins == 0
        bins_min_clamped = bins.masked_fill(zero_mask, 1)

        new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
        new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d=dim), samples)
        new_means = new_means / bins_min_clamped[..., None]

        if use_cosine_sim:
            new_means = l2norm(new_means)

        means = torch.where(zero_mask[..., None], means, new_means)

    return means, bins


class EmbeddingEMA(nn.Module):
    def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5, kmeans_init=True, codebook_init_path=''):
        super().__init__()
        self.num_tokens = num_tokens
        self.codebook_dim = codebook_dim
        self.decay = decay
        self.eps = eps
        if codebook_init_path == '':
            if not kmeans_init:
                weight = torch.randn(num_tokens, codebook_dim)
                weight = l2norm(weight)
            else:
                weight = torch.zeros(num_tokens, codebook_dim)
            self.register_buffer('initted', torch.Tensor([not kmeans_init]))
        else:
            print(f"load init codebook weight from {codebook_init_path}")
            codebook_ckpt_weight = torch.load(codebook_init_path, map_location='cpu')
            weight = codebook_ckpt_weight.clone()
            self.register_buffer('initted', torch.Tensor([True]))

        self.weight = nn.Parameter(weight, requires_grad=False)
        self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False)
        self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False)
        # self.register_buffer('initted', torch.Tensor([not kmeans_init]))
        self.update = True

    @torch.jit.ignore
    def init_embed_(self, data):
        if self.initted:
            return
        print("Performing Kemans init for codebook")
        embed, cluster_size = kmeans(data, self.num_tokens, 10, use_cosine_sim=True)
        self.weight.data.copy_(embed)
        self.cluster_size.data.copy_(cluster_size)
        self.initted.data.copy_(torch.Tensor([True]))

    def forward(self, embed_id):
        return F.embedding(embed_id, self.weight)

    def cluster_size_ema_update(self, new_cluster_size):
        self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay)

    def embed_avg_ema_update(self, new_embed_avg):
        self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay)

    def weight_update(self, num_tokens):
        n = self.cluster_size.sum()
        smoothed_cluster_size = (
                (self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n
        )
        # normalize embedding average with smoothed cluster size
        embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
        # embed_normalized = l2norm(self.embed_avg / smoothed_cluster_size.unsqueeze(1))
        self.weight.data.copy_(embed_normalized)


def norm_ema_inplace(moving_avg, new, decay):
    moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
    moving_avg.data.copy_(l2norm(moving_avg.data))


class NormEMAVectorQuantizer(nn.Module):
    def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5,
                 statistic_code_usage=True, kmeans_init=False, codebook_init_path=''):
        super().__init__()
        self.codebook_dim = embedding_dim
        self.num_tokens = n_embed
        self.beta = beta
        self.decay = decay

        # learnable = True if orthogonal_reg_weight > 0 else False
        self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps, kmeans_init, codebook_init_path)

        self.statistic_code_usage = statistic_code_usage
        if statistic_code_usage:
            self.register_buffer('cluster_size', torch.zeros(n_embed))
        if distributed.is_available() and distributed.is_initialized():
            print("ddp is enable, so use ddp_reduce to sync the statistic_code_usage for each gpu!")
            self.all_reduce_fn = distributed.all_reduce
        else:
            self.all_reduce_fn = nn.Identity()

    def reset_cluster_size(self, device):
        if self.statistic_code_usage:
            self.register_buffer('cluster_size', torch.zeros(self.num_tokens))
            self.cluster_size = self.cluster_size.to(device)

    def forward(self, z):
        # reshape z -> (batch, height, width, channel) and flatten
        # z, 'b c h w -> b h w c'
        # z = rearrange(z, 'b c h w -> b h w c')
        # z = z.transpose(1, 2)
        z = l2norm(z)
        z_flattened = z.reshape(-1, self.codebook_dim)

        self.embedding.init_embed_(z_flattened)

        d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \
            self.embedding.weight.pow(2).sum(dim=1) - 2 * \
            torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight)  # 'n d -> d n'

        encoding_indices = torch.argmin(d, dim=1)

        z_q = self.embedding(encoding_indices).view(z.shape)

        encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype)

        if not self.training:
            with torch.no_grad():
                cluster_size = encodings.sum(0)
                self.all_reduce_fn(cluster_size)
                ema_inplace(self.cluster_size, cluster_size, self.decay)

        if self.training and self.embedding.update:
            # EMA cluster size

            bins = encodings.sum(0)
            self.all_reduce_fn(bins)

            # self.embedding.cluster_size_ema_update(bins)
            ema_inplace(self.cluster_size, bins, self.decay)

            zero_mask = (bins == 0)
            bins = bins.masked_fill(zero_mask, 1.)

            embed_sum = z_flattened.t() @ encodings
            self.all_reduce_fn(embed_sum)

            embed_normalized = (embed_sum / bins.unsqueeze(0)).t()
            embed_normalized = l2norm(embed_normalized)

            embed_normalized = torch.where(zero_mask[..., None], self.embedding.weight,
                                           embed_normalized)
            norm_ema_inplace(self.embedding.weight, embed_normalized, self.decay)

        # compute loss for embedding
        loss = self.beta * F.mse_loss(z_q.detach(), z)

        # preserve gradients
        z_q = z + (z_q - z).detach()

        # reshape back to match original input shape
        # z_q, 'b h w c -> b c h w'
        # z_q = rearrange(z_q, 'b h w c -> b c h w')
        # z_q = z_q.transpose(1, 2)
        return z_q, loss, encoding_indices