File size: 12,250 Bytes
b20af9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import torch
import torch.nn.functional as F
from torch import nn

import yaml
import argparse

from modules.BEATs.BEATs import BEATs, BEATsConfig
from modules.AudioToken.embedder import FGAEmbedder
from modules.CLIPSeg.clipseg_for_audio import CLIPSeg
from modules.mask_utils import ImageMasker, FeatureMasker
from transformers import AutoTokenizer


class ACL(nn.Module):
    def __init__(self, conf_file: str, device: str):
        """
        Audio-Grounded Contrastive Learning (ACL) model.

        Args:
            conf_file (str): Path to the configuration file.
            device (str): Device to move the model to.
        """
        super(ACL, self).__init__()

        # Get configuration
        with open(conf_file) as f:
            config = yaml.load(f, Loader=yaml.FullLoader)
            self.args = argparse.Namespace()
            self.args.model = argparse.Namespace(**config['model'])
            self.args.clip_embedding_dim = config['clip_conf'][self.args.model.clip]['embedding_dim']
            self.args.clip_name = config['clip_conf'][self.args.model.clip]['name']
            self.pretrain = argparse.Namespace(**config['pretrain'])
            self.args.audio_proj = argparse.Namespace(**config['fga_conf'][self.args.model.audio_proj])

        # Init audio encoder
        checkpoint = torch.load(self.pretrain.audio_backbone)
        cfg = BEATsConfig(checkpoint['cfg'])
        self.audio_backbone = BEATs(cfg)

        # Text Tokenizer for placeholder prompt
        self.tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined")

        # Init audio projection layer
        self.audio_proj = FGAEmbedder(input_size=self.args.audio_proj.input_size * 3,
                                      output_size=self.args.audio_proj.output_size)

        # Init audio-visual grounder (Grounder: CLIPSeg)
        self.av_grounder = CLIPSeg.from_pretrained("CIDAS/clipseg-rd64-refined")

        # Init maskers
        self.masker_i = ImageMasker(10.0, 14.0, 1.0)
        self.masker_f = FeatureMasker(0.5, 0.07)

        # Load weights
        self.audio_backbone.load_state_dict(checkpoint['model'])
        self.audio_backbone.predictor = None

        if self.pretrain.audio_proj is not None:
            self.audio_proj.load_state_dict(torch.load(self.pretrain.audio_embedder))

        # Set device
        self.device = device
        self.audio_backbone.to(device=self.device)
        self.av_grounder.to(device=self.device)
        self.audio_proj.to(device=self.device)
        self.masker_i.to(self.device)
        self.masker_f.to(self.device)

    def get_placeholder_token(self, prompt_text: str):
        """
        Get placeholder token from prompt text

        Args:
            prompt_text (str): prompt text without '{}'

        Returns:
            CLIPTokenizerFast result with prompt text
        """
        placeholder_token = self.tokenizer(prompt_text, return_tensors="pt").data['input_ids']
        placeholder_token = F.pad(placeholder_token, (0, 77 - placeholder_token.shape[-1])).to(self.device)
        return placeholder_token

    def train(self, bool: bool = True):
        """
        Set the module in training mode.

        Args:
            bool (bool): If True, set the module in training mode.
        """
        super().train(bool)
        self.av_grounder.requires_grad_(False)
        self.audio_backbone.requires_grad_(False)

    def encode_audio(self, audio: torch.Tensor, placeholder_token: torch.Tensor, pos: int,
                     prompt_size: int) -> torch.Tensor:
        """
        Encode audio input into audio-driven embedding (Audio-Driven Embedder)

        Args:
            audio (torch.Tensor): Input audio tensor.
            placeholder_token (torch.Tensor): Placeholder token for CLIP Text encoder.
            pos (int): Position of audio token.
            prompt_size (int): Size of the placeholder prompt.

        Returns:
            torch.Tensor: Audio-driven embeddings.
        """
        audio_feat = self.audio_backbone.extract_features(audio)[1]
        audio_token_emb = self.audio_proj(audio_feat).unsqueeze(1)
        audio_driven_embedding = self.av_grounder.encode_audio(placeholder_token, audio_token_emb, pos,
                                                               prompt_size + audio_token_emb.shape[1])

        return audio_driven_embedding

    def encode_vision(self, image: torch.Tensor) -> torch.Tensor:
        """
        Encode visual input and generate visual embeddings.

        Args:
            image (torch.Tensor): Input image tensor.

        Returns:
            torch.Tensor: Visual embeddings.
        """
        vision_outputs = self.av_grounder.clip.vision_model(pixel_values=image,
                                                            output_attentions=None,
                                                            output_hidden_states=True,
                                                            return_dict=True)
        pooled_output = self.av_grounder.clip.visual_projection(vision_outputs[1])

        return pooled_output

    def forward_decoder(self, image: torch.Tensor, embedding: torch.Tensor, resolution: int = 224) -> torch.Tensor:
        """
        Forward pass of audio-visual grounder

        Args:
            image (torch.Tensor): Input image tensor.
            embedding (torch.Tensor): Condition embedding tensor for grounder.
            resolution (int): Resolution of the output.
            ignore_indices (list): List of indices to ignore.

        Returns:
            torch.Tensor: Logits from the decoder.
        """
        # step 1: forward the query images through the frozen CLIP vision encoder
        vision_outputs = self.av_grounder.clip.vision_model(pixel_values=image,
                                                            output_attentions=None,
                                                            output_hidden_states=True,
                                                            return_dict=True)

        hidden_states = vision_outputs.hidden_states
        # we add +1 here as the hidden states also include the initial embeddings
        activations = [hidden_states[i + 1] for i in self.av_grounder.extract_layers]

        # step 2: compute conditional embeddings, either from text, images or an own provided embedding
        # Audio injected embedding from input argument

        # step 3: forward both the pooled output and the activations through the lightweight decoder to predict masks
        decoder_outputs = self.av_grounder.decoder(
            activations,
            embedding,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=True,
        )
        logits = decoder_outputs.logits

        if logits.ndim == 2:
            logits = logits.unsqueeze(0).unsqueeze(1)
        else:
            logits = logits.unsqueeze(1)

        B, c, h, w = image.shape
        if (h, w) != (resolution, resolution):
            logits = F.interpolate(logits, resolution, mode='bicubic')

        return logits

    def forward_module(self, image: torch.Tensor, embedding: torch.Tensor, resolution: int = 224,
                       force_comb: bool = False) -> torch.Tensor:
        """
        Forward pass through the module.

        Args:
            image (torch.Tensor): Input image tensor.
            embedding (torch.Tensor): Condition embedding tensor for grounder.
            resolution (int): Resolution of the output tensor.
            force_comb (bool): If True, force to get logits with all combination audio and image.

        Returns:
            torch.Tensor: Logits from the decoder.
        """
        # N image, 1 embedding case -> [B_i, h, w]
        if embedding.shape[0] != image.shape[0] and embedding.shape[0] == 1:
            embeddings = embedding.repeat(image.shape[0], 1)
            logits = self.forward_decoder(image, embeddings, resolution)

        # N image, M embedding case -> [B_i, B_e, h, w]
        elif embedding.shape[0] != image.shape[0] and embedding.shape[0] != 1 and image.shape[0] != 1 or force_comb:
            logit_list = []
            for i in range(embedding.shape[0]):
                embeddings = embedding[i].unsqueeze(0).repeat(image.shape[0], 1)
                logit_list.append(self.forward_decoder(image, embeddings, resolution))
            logits = torch.cat(logit_list, dim=1)

        # N image, N embedding or 1 image, N embedding -> [B_e, h, w]
        else:
            logits = self.forward_decoder(image, embedding, resolution)

        return logits

    def encode_masked_vision(self, image: torch.Tensor, embedding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, float, float]:
        """
        Encode masked visual feature both image-level and feature-level.

        Args:
            image (torch.Tensor): Input image tensor.
            embedding (torch.Tensor): Condition embedding tensor for grounder.

        Returns:
            tuple[torch.Tensor, torch.Tensor, float, float]: Feature masked embeddings, masked image embeddings, positive area, negative area.
        """
        B, c, h, w = image.shape
        maskclip_feat = self.av_grounder.get_pixels(image)  # v^D: [B, c, h, w]
        clipseg_mask = self.forward_module(image, embedding, h, force_comb=True)  # M^G: [B, B, H, W]

        # Area
        area_matrix = self.masker_i(clipseg_mask).mean((2, 3))
        positive_area = area_matrix.diagonal().mean()
        negative_area = area_matrix.mean() - positive_area / B

        # Feature level masker
        feature_mask = F.interpolate(self.masker_f(clipseg_mask), maskclip_feat.shape[2])

        # Image level masker
        ind = torch.arange(B).to(image.device)
        image_mask = self.masker_i(clipseg_mask[ind, ind].unsqueeze(1))  # Positive pair only
        feature_masked_emb = torch.einsum('bchw,bnhw->bnc', maskclip_feat, feature_mask) / (feature_mask.sum() + 1e-6)

        # step 1: forward the query images through the frozen CLIP vision encoder
        masked_vision_outputs = self.av_grounder.clip.vision_model(pixel_values=image * image_mask,
                                                                   output_attentions=None,
                                                                   output_hidden_states=True,
                                                                   return_dict=True)
        masked_image_emb = self.av_grounder.clip.visual_projection(masked_vision_outputs[1])

        return feature_masked_emb, masked_image_emb, positive_area, negative_area

    def forward(self, image: torch.Tensor, embedding: torch.Tensor, resolution: int = 224) -> dict:
        """
        Forward pass of ACL model.

        Args:
            image (torch.Tensor): Input image tensor.
            embedding (torch.Tensor): Condition embedding tensor for grounder.
            resolution (int): Resolution of the output tensor.

        Returns:
            dict: Output dictionary containing relevant tensors.
        """
        if self.training:
            # seg_logit = self.forward_module(image, embedding, resolution)
            v_f, v_i, p_area, n_area = self.encode_masked_vision(image, embedding)
            out_dict = {'v_f': v_f, 'v_i': v_i, 'p_area': p_area, 'n_area': n_area}

        else:
            seg_logit = self.forward_module(image, embedding, resolution)
            heatmap = self.masker_i(seg_logit, infer=True)
            out_dict = {'heatmap': heatmap}

        return out_dict

    def save(self, model_dir: str):
        """
        Save model parameters to a file. (Only trainable parts)

        Args:
            model_dir (str): Directory to save the model.
        """
        ckp = {'audio_proj': self.audio_proj.state_dict(), 'masker_i': self.masker_i.state_dict()}
        torch.save(ckp, model_dir)

    def load(self, model_dir: str):
        """
        Load model parameters from a file. (Only trainable parts)

        Args:
            model_dir (str): Directory to load the model from.
        """
        ckp = torch.load(model_dir)
        self.audio_proj.load_state_dict(ckp['audio_proj'])
        self.masker_i.load_state_dict(ckp['masker_i'])