Spaces:
Runtime error
Runtime error
File size: 11,194 Bytes
88490a8 7a3b53b 88490a8 7a3b53b 88490a8 7a3b53b 88490a8 7a3b53b 88490a8 7a3b53b 88490a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import os
import random
import numpy as np
import librosa
import torch
import pytorch_lightning as pl
import soundfile as sf
from torch.nn.utils.rnn import pad_sequence
from transformers import T5Config, T5ForConditionalGeneration
from midi_tokenizer import MidiTokenizer, extrapolate_beat_times
from layer.input import LogMelSpectrogram, ConcatEmbeddingToMel
from preprocess.beat_quantizer import extract_rhythm, interpolate_beat_times
from utils.dsp import get_stereo
DEFAULT_COMPOSERS = {"various composer": 2052}
class TransformerWrapper(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.config = config
self.tokenizer = MidiTokenizer(config.tokenizer)
self.t5config = T5Config.from_pretrained("t5-small")
for k, v in config.t5.items():
self.t5config.__setattr__(k, v)
self.transformer = T5ForConditionalGeneration(self.t5config)
self.use_mel = self.config.dataset.use_mel
self.mel_is_conditioned = self.config.dataset.mel_is_conditioned
self.composer_to_feature_token = config.composer_to_feature_token
if self.use_mel and not self.mel_is_conditioned:
self.composer_to_feature_token = DEFAULT_COMPOSERS
if self.use_mel:
self.spectrogram = LogMelSpectrogram()
if self.mel_is_conditioned:
n_dim = 512
composer_n_vocab = len(self.composer_to_feature_token)
embedding_offset = min(self.composer_to_feature_token.values())
self.mel_conditioner = ConcatEmbeddingToMel(
embedding_offset=embedding_offset,
n_vocab=composer_n_vocab,
n_dim=n_dim,
)
else:
self.spectrogram = None
self.lr = config.training.lr
def forward(self, input_ids, labels):
"""
Deprecated.
"""
rt = self.transformer(input_ids=input_ids, labels=labels)
return rt
@torch.no_grad()
def single_inference(
self,
feature_tokens=None,
audio=None,
beatstep=None,
max_length=256,
max_batch_size=64,
n_bars=None,
composer_value=None,
):
"""
generate a long audio sequence
feature_tokens or audio : shape (time, )
beatstep : shape (time, )
- input_ids๊ฐ ํด๋นํ๋ beatstep ๊ฐ๋ค
(offset ๋น ์ง, ์ฆ beatstep[0] == 0)
- beatstep[-1] : input_ids๊ฐ ๋๋๋ ์ง์ ์ ์๊ฐ๊ฐ
(์ฆ beatstep[-1] == len(y)//sr)
"""
assert feature_tokens is not None or audio is not None
assert beatstep is not None
if feature_tokens is not None:
assert len(feature_tokens.shape) == 1
if audio is not None:
assert len(audio.shape) == 1
config = self.config
PAD = self.t5config.pad_token_id
n_bars = config.dataset.n_bars if n_bars is None else n_bars
if beatstep[0] > 0.01:
print(
"inference warning : beatstep[0] is not 0 ({beatstep[0]}). all beatstep will be shifted."
)
beatstep = beatstep - beatstep[0]
if self.use_mel:
input_ids = None
inputs_embeds, ext_beatstep = self.prepare_inference_mel(
audio,
beatstep,
n_bars=n_bars,
padding_value=PAD,
composer_value=composer_value,
)
batch_size = inputs_embeds.shape[0]
else:
raise NotImplementedError
# Considering GPU capacity, some sequence would not be generated at once.
relative_tokens = list()
for i in range(0, batch_size, max_batch_size):
start = i
end = min(batch_size, i + max_batch_size)
if input_ids is None:
_input_ids = None
_inputs_embeds = inputs_embeds[start:end]
else:
_input_ids = input_ids[start:end]
_inputs_embeds = None
_relative_tokens = self.transformer.generate(
input_ids=_input_ids,
inputs_embeds=_inputs_embeds,
max_length=max_length,
)
_relative_tokens = _relative_tokens.cpu().numpy()
relative_tokens.append(_relative_tokens)
max_length = max([rt.shape[-1] for rt in relative_tokens])
for i in range(len(relative_tokens)):
relative_tokens[i] = np.pad(
relative_tokens[i],
[(0, 0), (0, max_length - relative_tokens[i].shape[-1])],
constant_values=PAD,
)
relative_tokens = np.concatenate(relative_tokens)
pm, notes = self.tokenizer.relative_batch_tokens_to_midi(
relative_tokens,
beatstep=ext_beatstep,
bars_per_batch=n_bars,
cutoff_time_idx=(n_bars + 1) * 4,
)
return relative_tokens, notes, pm
def prepare_inference_mel(self, audio, beatstep, n_bars, padding_value, composer_value=None):
n_steps = n_bars * 4
n_target_step = len(beatstep)
sample_rate = self.config.dataset.sample_rate
ext_beatstep = extrapolate_beat_times(beatstep, (n_bars + 1) * 4 + 1)
def split_audio(audio):
# Split audio corresponding beat intervals.
# Each audio's lengths are different.
# Because each corresponding beat interval times are different.
batch = []
for i in range(0, n_target_step, n_steps):
start_idx = i
end_idx = min(i + n_steps, n_target_step)
start_sample = int(ext_beatstep[start_idx] * sample_rate)
end_sample = int(ext_beatstep[end_idx] * sample_rate)
feature = audio[start_sample:end_sample]
batch.append(feature)
return batch
def pad_and_stack_batch(batch):
batch = pad_sequence(batch, batch_first=True, padding_value=padding_value)
return batch
batch = split_audio(audio)
batch = pad_and_stack_batch(batch)
inputs_embeds = self.spectrogram(batch).transpose(-1, -2)
if self.mel_is_conditioned:
composer_value = torch.tensor(composer_value).to(self.device)
composer_value = composer_value.repeat(inputs_embeds.shape[0])
inputs_embeds = self.mel_conditioner(inputs_embeds, composer_value)
return inputs_embeds, ext_beatstep
@torch.no_grad()
def generate(
self,
audio_path=None,
composer=None,
model="generated",
steps_per_beat=2,
stereo_amp=0.5,
n_bars=2,
ignore_duplicate=True,
show_plot=False,
save_midi=False,
save_mix=False,
midi_path=None,
mix_path=None,
click_amp=0.2,
add_click=False,
max_batch_size=None,
beatsteps=None,
mix_sample_rate=None,
audio_y=None,
audio_sr=None,
):
config = self.config
device = self.device
if audio_path is not None:
extension = os.path.splitext(audio_path)[1]
mix_path = (
audio_path.replace(extension, f".{model}.{composer}.wav")
if mix_path is None
else mix_path
)
midi_path = (
audio_path.replace(extension, f".{model}.{composer}.mid")
if midi_path is None
else midi_path
)
max_batch_size = 64 // n_bars if max_batch_size is None else max_batch_size
composer_to_feature_token = self.composer_to_feature_token
if composer is None:
composer = random.sample(list(composer_to_feature_token.keys()), 1)[0]
composer_value = composer_to_feature_token[composer]
mix_sample_rate = config.dataset.sample_rate if mix_sample_rate is None else mix_sample_rate
if not ignore_duplicate:
if os.path.exists(midi_path):
return
ESSENTIA_SAMPLERATE = 44100
if beatsteps is None:
y, sr = librosa.load(audio_path, sr=ESSENTIA_SAMPLERATE)
(
bpm,
beat_times,
confidence,
estimates,
essentia_beat_intervals,
) = extract_rhythm(audio_path, y=y)
beat_times = np.array(beat_times)
beatsteps = interpolate_beat_times(beat_times, steps_per_beat, extend=True)
else:
y = None
if self.use_mel:
if audio_y is None and config.dataset.sample_rate != ESSENTIA_SAMPLERATE:
if y is not None:
y = librosa.core.resample(
y,
orig_sr=ESSENTIA_SAMPLERATE,
target_sr=config.dataset.sample_rate,
)
sr = config.dataset.sample_rate
else:
y, sr = librosa.load(audio_path, sr=config.dataset.sample_rate)
elif audio_y is not None:
if audio_sr != config.dataset.sample_rate:
audio_y = librosa.core.resample(
audio_y, orig_sr=audio_sr, target_sr=config.dataset.sample_rate
)
audio_sr = config.dataset.sample_rate
y = audio_y
sr = audio_sr
start_sample = int(beatsteps[0] * sr)
end_sample = int(beatsteps[-1] * sr)
_audio = torch.from_numpy(y)[start_sample:end_sample].to(device)
fzs = None
else:
raise NotImplementedError
relative_tokens, notes, pm = self.single_inference(
feature_tokens=fzs,
audio=_audio,
beatstep=beatsteps - beatsteps[0],
max_length=config.dataset.target_length * max(1, (n_bars // config.dataset.n_bars)),
max_batch_size=max_batch_size,
n_bars=n_bars,
composer_value=composer_value,
)
for n in pm.instruments[0].notes:
n.start += beatsteps[0]
n.end += beatsteps[0]
if show_plot or save_mix:
if mix_sample_rate != sr:
y = librosa.core.resample(y, orig_sr=sr, target_sr=mix_sample_rate)
sr = mix_sample_rate
if add_click:
clicks = librosa.clicks(times=beatsteps, sr=sr, length=len(y)) * click_amp
y = y + clicks
pm_y = pm.fluidsynth(sr)
stereo = get_stereo(y, pm_y, pop_scale=stereo_amp)
if show_plot:
import note_seq
note_seq.plot_sequence(note_seq.midi_to_note_sequence(pm))
if save_mix:
sf.write(
file=mix_path,
data=stereo.T,
samplerate=sr,
format="wav",
)
if save_midi:
pm.write(midi_path)
return pm, composer, mix_path, midi_path
|