Spaces:
Runtime error
Runtime error
sweetcocoa
commited on
Commit
•
7a3b53b
1
Parent(s):
1aa2e4c
move to gradio
Browse files- app.py +66 -43
- transformer_wrapper.py +5 -17
app.py
CHANGED
@@ -1,15 +1,13 @@
|
|
1 |
-
import
|
2 |
import os
|
3 |
from transformer_wrapper import TransformerWrapper
|
4 |
from omegaconf import OmegaConf
|
5 |
|
6 |
|
7 |
-
@st.cache(show_spinner=False)
|
8 |
def get_file_content_as_string(path):
|
9 |
return open(path, "r", encoding="utf-8").read()
|
10 |
|
11 |
|
12 |
-
@st.cache(show_spinner=True)
|
13 |
def model_load():
|
14 |
config = OmegaConf.load("config.yaml")
|
15 |
wrapper = TransformerWrapper(config)
|
@@ -23,43 +21,68 @@ def model_load():
|
|
23 |
return wrapper, model_id, config
|
24 |
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import os
|
3 |
from transformer_wrapper import TransformerWrapper
|
4 |
from omegaconf import OmegaConf
|
5 |
|
6 |
|
|
|
7 |
def get_file_content_as_string(path):
|
8 |
return open(path, "r", encoding="utf-8").read()
|
9 |
|
10 |
|
|
|
11 |
def model_load():
|
12 |
config = OmegaConf.load("config.yaml")
|
13 |
wrapper = TransformerWrapper(config)
|
|
|
21 |
return wrapper, model_id, config
|
22 |
|
23 |
|
24 |
+
wrapper, model_id, config = model_load()
|
25 |
+
composers = list(config.composer_to_feature_token.keys())
|
26 |
+
dest_dir = "ytsamples"
|
27 |
+
os.makedirs(dest_dir, exist_ok=True)
|
28 |
+
|
29 |
+
|
30 |
+
def inference(file_up, composer):
|
31 |
+
|
32 |
+
midi, arranger, mix_path, midi_path = wrapper.generate(
|
33 |
+
audio_path=file_up,
|
34 |
+
composer=composer,
|
35 |
+
model=model_id,
|
36 |
+
ignore_duplicate=True,
|
37 |
+
show_plot=False,
|
38 |
+
save_midi=True,
|
39 |
+
save_mix=True,
|
40 |
+
)
|
41 |
+
|
42 |
+
return mix_path
|
43 |
+
|
44 |
+
|
45 |
+
block = gr.Blocks()
|
46 |
+
|
47 |
+
|
48 |
+
with block:
|
49 |
+
gr.HTML(
|
50 |
+
"""
|
51 |
+
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
52 |
+
<div
|
53 |
+
style="
|
54 |
+
display: inline-flex;
|
55 |
+
align-items: center;
|
56 |
+
gap: 0.8rem;
|
57 |
+
font-size: 1.75rem;
|
58 |
+
"
|
59 |
+
>
|
60 |
+
<h1 style="font-weight: 900; margin-bottom: 7px;">
|
61 |
+
Pop2piano
|
62 |
+
</h1>
|
63 |
+
</div>
|
64 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
65 |
+
A demo for Pop2Piano:Pop Audio-based Piano Cover Generation. Please select the composer and upload the pop audio to submit.
|
66 |
+
</p>
|
67 |
+
</div>
|
68 |
+
"""
|
69 |
+
)
|
70 |
+
with gr.Group():
|
71 |
+
with gr.Box():
|
72 |
+
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
73 |
+
file_up = gr.Audio(label="Upload an audio", type="filepath")
|
74 |
+
composer = gr.Dropdown(label="Arranger", choices=composers, value="composer1")
|
75 |
+
btn = gr.Button("Convert")
|
76 |
+
out = gr.Audio(label="Output")
|
77 |
+
|
78 |
+
btn.click(inference, inputs=[file_up, composer], outputs=out)
|
79 |
+
gr.HTML(
|
80 |
+
"""
|
81 |
+
<div class="footer">
|
82 |
+
<p><a href="http://sweetcocoa.github.io/pop2piano_samples" style="text-decoration: underline;" target="_blank">Project Page</a>
|
83 |
+
</p>
|
84 |
+
</div>
|
85 |
+
"""
|
86 |
+
)
|
87 |
+
|
88 |
+
block.launch(debug=True)
|
transformer_wrapper.py
CHANGED
@@ -155,9 +155,7 @@ class TransformerWrapper(pl.LightningModule):
|
|
155 |
|
156 |
return relative_tokens, notes, pm
|
157 |
|
158 |
-
def prepare_inference_mel(
|
159 |
-
self, audio, beatstep, n_bars, padding_value, composer_value=None
|
160 |
-
):
|
161 |
n_steps = n_bars * 4
|
162 |
n_target_step = len(beatstep)
|
163 |
sample_rate = self.config.dataset.sample_rate
|
@@ -240,9 +238,7 @@ class TransformerWrapper(pl.LightningModule):
|
|
240 |
composer = random.sample(list(composer_to_feature_token.keys()), 1)[0]
|
241 |
|
242 |
composer_value = composer_to_feature_token[composer]
|
243 |
-
mix_sample_rate =
|
244 |
-
config.dataset.sample_rate if mix_sample_rate is None else mix_sample_rate
|
245 |
-
)
|
246 |
|
247 |
if not ignore_duplicate:
|
248 |
if os.path.exists(midi_path):
|
@@ -295,8 +291,7 @@ class TransformerWrapper(pl.LightningModule):
|
|
295 |
feature_tokens=fzs,
|
296 |
audio=_audio,
|
297 |
beatstep=beatsteps - beatsteps[0],
|
298 |
-
max_length=config.dataset.target_length
|
299 |
-
* max(1, (n_bars // config.dataset.n_bars)),
|
300 |
max_batch_size=max_batch_size,
|
301 |
n_bars=n_bars,
|
302 |
composer_value=composer_value,
|
@@ -311,22 +306,15 @@ class TransformerWrapper(pl.LightningModule):
|
|
311 |
y = librosa.core.resample(y, orig_sr=sr, target_sr=mix_sample_rate)
|
312 |
sr = mix_sample_rate
|
313 |
if add_click:
|
314 |
-
clicks = (
|
315 |
-
librosa.clicks(times=beatsteps, sr=sr, length=len(y)) * click_amp
|
316 |
-
)
|
317 |
y = y + clicks
|
318 |
pm_y = pm.fluidsynth(sr)
|
319 |
stereo = get_stereo(y, pm_y, pop_scale=stereo_amp)
|
320 |
|
321 |
if show_plot:
|
322 |
-
import IPython.display as ipd
|
323 |
-
from IPython.display import display
|
324 |
import note_seq
|
325 |
|
326 |
-
|
327 |
-
display("Rendered MIDI", ipd.Audio(pm_y, rate=sr))
|
328 |
-
display("Original Song", ipd.Audio(y, rate=sr))
|
329 |
-
display(note_seq.plot_sequence(note_seq.midi_to_note_sequence(pm)))
|
330 |
|
331 |
if save_mix:
|
332 |
sf.write(
|
|
|
155 |
|
156 |
return relative_tokens, notes, pm
|
157 |
|
158 |
+
def prepare_inference_mel(self, audio, beatstep, n_bars, padding_value, composer_value=None):
|
|
|
|
|
159 |
n_steps = n_bars * 4
|
160 |
n_target_step = len(beatstep)
|
161 |
sample_rate = self.config.dataset.sample_rate
|
|
|
238 |
composer = random.sample(list(composer_to_feature_token.keys()), 1)[0]
|
239 |
|
240 |
composer_value = composer_to_feature_token[composer]
|
241 |
+
mix_sample_rate = config.dataset.sample_rate if mix_sample_rate is None else mix_sample_rate
|
|
|
|
|
242 |
|
243 |
if not ignore_duplicate:
|
244 |
if os.path.exists(midi_path):
|
|
|
291 |
feature_tokens=fzs,
|
292 |
audio=_audio,
|
293 |
beatstep=beatsteps - beatsteps[0],
|
294 |
+
max_length=config.dataset.target_length * max(1, (n_bars // config.dataset.n_bars)),
|
|
|
295 |
max_batch_size=max_batch_size,
|
296 |
n_bars=n_bars,
|
297 |
composer_value=composer_value,
|
|
|
306 |
y = librosa.core.resample(y, orig_sr=sr, target_sr=mix_sample_rate)
|
307 |
sr = mix_sample_rate
|
308 |
if add_click:
|
309 |
+
clicks = librosa.clicks(times=beatsteps, sr=sr, length=len(y)) * click_amp
|
|
|
|
|
310 |
y = y + clicks
|
311 |
pm_y = pm.fluidsynth(sr)
|
312 |
stereo = get_stereo(y, pm_y, pop_scale=stereo_amp)
|
313 |
|
314 |
if show_plot:
|
|
|
|
|
315 |
import note_seq
|
316 |
|
317 |
+
note_seq.plot_sequence(note_seq.midi_to_note_sequence(pm))
|
|
|
|
|
|
|
318 |
|
319 |
if save_mix:
|
320 |
sf.write(
|