Spaces:
Runtime error
Runtime error
File size: 7,357 Bytes
26cb741 ceb92ad 26cb741 7a3b53b 26cb741 7a3b53b 26cb741 7a3b53b 26cb741 e94f209 26cb741 e94f209 26cb741 e94f209 26cb741 e94f209 7a3b53b 26cb741 7a3b53b 26cb741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
import torch
import librosa
import binascii
import warnings
import midi2audio # to convert midi to wav
import numpy as np
import pytube as pt # to download the youtube videos as audios
import gradio as gr
import soundfile as sf # to make the stereo mix
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
yt_video_dir = "./yt_dir"
outputs_dir = "./midi_wav_outputs"
os.makedirs(outputs_dir, exist_ok=True)
os.makedirs(yt_video_dir, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano").to(device)
processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano")
composers = model.generation_config.composer_to_feature_token.keys()
def get_audio_from_yt_video(yt_link):
try:
yt = pt.YouTube(yt_link)
t = yt.streams.filter(only_audio=True)
filename = os.path.join(yt_video_dir, binascii.hexlify(os.urandom(8)).decode() + ".mp4")
t[0].download(filename=filename)
except:
warnings.warn(f"Video Not Found at {yt_link}")
filename = None
return filename, filename
def inference(file_uploaded, composer):
# to save the native sampling rate of the file, sr=None is used, but this can cause some silent errors where the
# generated output will not be upto the desired quality. If that happens please consider switching sr to 44100 Hz.
waveform, sr = librosa.load(file_uploaded, sr=None)
inputs = processor(audio=waveform, sampling_rate=sr, return_tensors="pt").to(device)
model_output = model.generate(input_features=inputs["input_features"], composer=composer)
tokenizer_output = processor.batch_decode(token_ids=model_output.to("cpu"), feature_extractor_output=inputs.to("cpu"))["pretty_midi_objects"]
return prepare_output_file(tokenizer_output, sr)
def prepare_output_file(tokenizer_output, sr):
# Add some random values so that no two file names are same
output_file_name = "output_" + binascii.hexlify(os.urandom(8)).decode()
midi_output = os.path.join(outputs_dir, output_file_name + ".mid")
# write the .mid file
tokenizer_output[0].write(midi_output)
# convert .mid file to .wav using `midi2audio`
wav_output = midi_output.replace(".mid", ".wav")
midi2audio.FluidSynth().midi_to_audio(midi_output, wav_output)
return wav_output, wav_output, midi_output
def get_stereo(pop_path, midi, pop_scale=0.5):
pop_y, sr = librosa.load(pop_path, sr=None)
midi_y, _ = librosa.load(midi.name, sr=None)
if len(pop_y) > len(midi_y):
midi_y = np.pad(midi_y, (0, len(pop_y) - len(midi_y)))
elif len(pop_y) < len(midi_y):
pop_y = np.pad(pop_y, (0, -len(pop_y) + len(midi_y)))
stereo = np.stack((midi_y, pop_y * pop_scale))
stereo_mix_path = pop_path.replace("output", "output_stereo_mix")
sf.write(file=stereo_mix_path, data=stereo.T, samplerate=sr, format="wav",)
return stereo_mix_path, stereo_mix_path
# Thanks a lot to "https://huggingface.co/Taithrah" for this theme.
# taken from https://huggingface.co/spaces/NoCrypt/miku
block = gr.Blocks(theme="Taithrah/Minimal")
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Pop2piano
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
A demo for Pop2Piano:Pop Audio-based Piano Cover Generation.<br>
Please select the composer(Arranger) and upload the pop audio or enter the YouTube link and then click Generate.
</p>
</div>
"""
)
with gr.Group():
with gr.Row(equal_height=True):
with gr.Column():
file_uploaded = gr.Audio(label="Upload an audio", type="filepath")
with gr.Column():
with gr.Row():
yt_link = gr.Textbox(label="Enter YouTube Link of the Video", autofocus=True, lines=3)
yt_btn = gr.Button("Download Audio from YouTube Link", size="lg")
yt_audio_path = gr.Audio(label="Audio Extracted from the YouTube Video", interactive=False)
yt_btn.click(get_audio_from_yt_video, inputs=[yt_link], outputs=[yt_audio_path, file_uploaded])
with gr.Group():
with gr.Column():
composer = gr.Dropdown(label="Arranger", choices=composers, value="composer1")
generate_btn = gr.Button("Generate")
with gr.Row().style(mobile_collapse=False, equal_height=True):
wav_output2 = gr.File(label="Download the Generated MIDI (.wav)")
wav_output1 = gr.Audio(label="Listen to the Generated MIDI")
midi_output = gr.File(label="Download the Generated MIDI (.mid)")
generate_btn.click(inference,
inputs=[file_uploaded, composer],
outputs=[wav_output1, wav_output2, midi_output])
with gr.Group():
gr.HTML(
"""
<div> <h3> <center> Get the Stereo Mix from the Pop Music and Generated MIDI </h3> </div>
"""
)
pop_scale = gr.Slider(0, 1, value=0.5, label="Choose the ratio between Pop and MIDI", info="1.0 = Only Pop, 0.0=Only MIDI", interactive=True),
stereo_btn = gr.Button("Get Stereo Mix")
with gr.Row():
stereo_mix1 = gr.Audio(label="Listen to the Stereo Mix")
stereo_mix2 = gr.File(label="Download the Stereo Mix")
stereo_btn.click(get_stereo, inputs=[file_uploaded, wav_output2, pop_scale[0]], outputs=[stereo_mix1, stereo_mix2])
with gr.Group():
gr.Examples([
["./examples/custom_song.mp3", "composer1"],
["./examples/BornThisWay.mp3", "composer1"],
["./examples/Sk8erBoi.mp3", "composer2"],
],
fn=inference,
inputs=[file_uploaded, composer],
outputs=[wav_output1, wav_output2, midi_output],
cache_examples=True
)
gr.HTML(
"""
<div class="footer">
<center>The design for this Space is taken from <a href="https://huggingface.co/spaces/NoCrypt/miku"> NoCrypt/miku </a>
</div>
"""
)
gr.HTML(
"""
<div class="footer">
<center><p><a href="http://sweetcocoa.github.io/pop2piano_samples" style="text-decoration: underline;" target="_blank">Project Page</a>
<center><a href="https://huggingface.co/docs/transformers/main/model_doc/pop2piano" style="text-decoration: underline;" target="_blank">HuggingFace Model Docs</a>
<center><a href="https://github.com/sweetcocoa/pop2piano" style="text-decoration: underline;" target="_blank">Github</a>
</p>
</div>
"""
)
block.launch(debug=False) |