File size: 2,239 Bytes
8e147a8
5025ad7
8e147a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import html
import streamlit as st
from transformers import AutoTokenizer
import colorsys

st.set_page_config(layout="wide", page_title="Text Tokenizer")

def get_random_color(token_id):
    # Generate a color based on the token id to ensure consistency
    hue = (hash(str(token_id)) % 1000) / 1000.0
    return f"hsla({int(hue * 360)}, 70%, 30%, 70%)"

def load_tokenizer(model_name="Qwen/Qwen2.5-Coder-7B-Instruct"):
    if 'tokenizer' not in st.session_state:
        st.session_state.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    return st.session_state.tokenizer

st.title("Text Tokenizer")
selected_model = "Qwen/Qwen2.5-Coder-7B-Instruct"

# Load tokenizer based on selection
try:
    tokenizer = load_tokenizer(selected_model)
    st.success(f"Loaded tokenizer: {selected_model}")
except Exception as e:
    st.error(f"Failed to load tokenizer: {e}")
    st.stop()

# Input text area
input_text = st.text_area("Enter text to tokenize", height=200)

# Tokenize button
if st.button("Tokenize") and input_text:
    tokens = tokenizer.encode(input_text)
    st.write(f"Total tokens: {len(tokens)}")
    
    # Generate colored text visualization
    result = ""
    prev_tokens = []
    prev_string = ""
    
    for token in tokens:
        color = get_random_color(token)
        current_string = tokenizer.decode(prev_tokens + [token])
        prev_tokens.append(token)
        current_delta = current_string[len(prev_string):]
        prev_string = current_string
        
        current_delta = html.escape(current_delta)
        current_delta = (current_delta
            .replace("\n", "↵<br/>")
            .replace(" ", "&nbsp;")
            .replace("\t", "&nbsp;&nbsp;&nbsp;&nbsp;"))
        
        result += f'<span style="background-color: {color};">{current_delta}</span>'

    st.html(f'<pre style="background-color: #222; padding: 10px; font-family: Courier, monospace;">{result}</pre>')
    
    # Show raw tokens (optional)
    with st.expander("View raw tokens"):
        token_strings = [tokenizer.decode([t]) for t in tokens]
        for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
            st.write(f"{i}: Token ID {token_id} → '{token_str}'")