File size: 10,695 Bytes
6c482f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
"""
Deployment Script for Agent Tuning Optimization Framework
This script prepares the framework for deployment to production environments
and Hugging Face Spaces.
"""
import os
import shutil
import argparse
import subprocess
import json
from pathlib import Path
def prepare_for_deployment(source_dir, output_dir, config_path=None):
"""
Prepare the framework for deployment.
Args:
source_dir: Source directory containing the framework
output_dir: Output directory for deployment package
config_path: Path to configuration file (optional)
"""
print(f"Preparing deployment package from {source_dir} to {output_dir}")
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Copy core modules
core_modules = [
"models",
"data",
"training",
"evaluation",
"main.py",
"README.md"
]
for module in core_modules:
source_path = os.path.join(source_dir, module)
target_path = os.path.join(output_dir, module)
if os.path.isdir(source_path):
if os.path.exists(target_path):
shutil.rmtree(target_path)
shutil.copytree(source_path, target_path)
else:
shutil.copy2(source_path, target_path)
# Copy configuration file if provided
if config_path:
shutil.copy2(config_path, os.path.join(output_dir, "config.json"))
else:
# Use example config
example_config_path = os.path.join(source_dir, "example_config.json")
if os.path.exists(example_config_path):
shutil.copy2(example_config_path, os.path.join(output_dir, "config.json"))
# Create requirements.txt
requirements = [
"torch>=1.10.0",
"transformers>=4.20.0",
"datasets>=2.0.0",
"numpy>=1.20.0",
"pandas>=1.3.0",
"matplotlib>=3.4.0",
"tqdm>=4.60.0",
"scikit-learn>=1.0.0",
"peft>=0.2.0"
]
with open(os.path.join(output_dir, "requirements.txt"), "w") as f:
f.write("\n".join(requirements))
# Create setup.py
setup_py = """
from setuptools import setup, find_packages
setup(
name="agent_tuning_framework",
version="0.1.0",
packages=find_packages(),
install_requires=[
"torch>=1.10.0",
"transformers>=4.20.0",
"datasets>=2.0.0",
"numpy>=1.20.0",
"pandas>=1.3.0",
"matplotlib>=3.4.0",
"tqdm>=4.60.0",
"scikit-learn>=1.0.0",
"peft>=0.2.0"
],
author="MBZUAI Technical Interview Preparation",
author_email="example@example.com",
description="Agent Tuning Optimization Framework with Negative and Synthetic Samples",
keywords="nlp, machine learning, agent tuning, language models",
url="https://github.com/username/agent_tuning_framework",
)
"""
with open(os.path.join(output_dir, "setup.py"), "w") as f:
f.write(setup_py)
# Create app.py for web interface
app_py = """
import os
import json
import gradio as gr
import torch
from models.llm_interface import LLMInterface
from data.trajectory_data import TrajectoryDataset, Trajectory
from training.negative_samples import create_negative_sample_generator
from training.synthetic_trajectories import create_synthetic_trajectory_generator
# Initialize model
def load_model(model_path):
if os.path.exists(model_path):
return LLMInterface(
model_name=model_path,
model_type="causal",
device="cuda" if torch.cuda.is_available() else "cpu"
)
else:
return LLMInterface(
model_name="gpt2",
model_type="causal",
device="cuda" if torch.cuda.is_available() else "cpu"
)
# Initialize components
model = load_model("./tuned_model")
negative_generator = create_negative_sample_generator("response_degradation")
synthetic_generator = create_synthetic_trajectory_generator("template")
# Define interface functions
def generate_response(task, user_message):
prompt = f"Task: {task}\\n\\nUser: {user_message}\\nAgent:"
response = model.generate(prompt)
return response["response"]
def generate_negative_sample(task, user_message, agent_message):
trajectory = Trajectory(
task_description=task,
interactions=[{"user": user_message, "agent": agent_message}]
)
negative_trajectory = negative_generator.generate(trajectory)
return negative_trajectory.interactions[0]["agent"]
def generate_synthetic_trajectory(task):
trajectory = synthetic_generator.generate(task)
result = ""
for i, interaction in enumerate(trajectory.interactions):
result += f"Turn {i+1}:\\nUser: {interaction['user']}\\nAgent: {interaction['agent']}\\n\\n"
return result
# Create Gradio interface
with gr.Blocks(title="Agent Tuning Framework Demo") as demo:
gr.Markdown("# Agent Tuning Optimization Framework Demo")
with gr.Tab("Generate Response"):
with gr.Row():
with gr.Column():
task_input = gr.Textbox(label="Task Description")
user_input = gr.Textbox(label="User Message")
generate_btn = gr.Button("Generate Response")
with gr.Column():
response_output = gr.Textbox(label="Agent Response")
generate_btn.click(
generate_response,
inputs=[task_input, user_input],
outputs=response_output
)
with gr.Tab("Generate Negative Sample"):
with gr.Row():
with gr.Column():
neg_task_input = gr.Textbox(label="Task Description")
neg_user_input = gr.Textbox(label="User Message")
neg_agent_input = gr.Textbox(label="Agent Message (Positive Example)")
neg_generate_btn = gr.Button("Generate Negative Sample")
with gr.Column():
neg_output = gr.Textbox(label="Negative Sample")
neg_generate_btn.click(
generate_negative_sample,
inputs=[neg_task_input, neg_user_input, neg_agent_input],
outputs=neg_output
)
with gr.Tab("Generate Synthetic Trajectory"):
with gr.Row():
with gr.Column():
synth_task_input = gr.Textbox(label="Task Description")
synth_generate_btn = gr.Button("Generate Synthetic Trajectory")
with gr.Column():
synth_output = gr.Textbox(label="Synthetic Trajectory")
synth_generate_btn.click(
generate_synthetic_trajectory,
inputs=[synth_task_input],
outputs=synth_output
)
if __name__ == "__main__":
demo.launch()
"""
with open(os.path.join(output_dir, "app.py"), "w") as f:
f.write(app_py)
# Create Dockerfile
dockerfile = """
FROM python:3.9-slim
WORKDIR /app
COPY . /app/
RUN pip install --no-cache-dir -r requirements.txt
RUN pip install --no-cache-dir gradio>=3.0.0
EXPOSE 7860
CMD ["python", "app.py"]
"""
with open(os.path.join(output_dir, "Dockerfile"), "w") as f:
f.write(dockerfile)
# Create README for deployment
deployment_readme = """
# Agent Tuning Optimization Framework
This package contains the Agent Tuning Optimization Framework with Negative and Synthetic Samples, a comprehensive solution for efficiently tuning large language models into specialized agents.
## Installation
```bash
pip install -r requirements.txt
```
## Usage
### Running Experiments
```bash
python main.py --config config.json --output ./experiment_results
```
### Web Interface
```bash
pip install gradio
python app.py
```
## Deployment Options
### Docker
```bash
docker build -t agent-tuning-framework .
docker run -p 7860:7860 agent-tuning-framework
```
### Hugging Face Spaces
This project can be deployed to Hugging Face Spaces by following these steps:
1. Create a new Space on Hugging Face (https://huggingface.co/spaces)
2. Select "Gradio" as the SDK
3. Upload all files from this directory to the Space
4. The Space will automatically build and deploy the application
## Configuration
See `config.json` for configuration options.
## License
MIT
"""
with open(os.path.join(output_dir, "README.md"), "w") as f:
f.write(deployment_readme)
# Create Hugging Face Space files
os.makedirs(os.path.join(output_dir, "huggingface"), exist_ok=True)
# Create requirements.txt for Hugging Face
hf_requirements = requirements + ["gradio>=3.0.0"]
with open(os.path.join(output_dir, "huggingface", "requirements.txt"), "w") as f:
f.write("\n".join(hf_requirements))
# Copy app.py
shutil.copy2(os.path.join(output_dir, "app.py"), os.path.join(output_dir, "huggingface", "app.py"))
# Create README for Hugging Face
hf_readme = """
---
title: Agent Tuning Optimization Framework
emoji: 🤖
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 3.36.1
app_file: app.py
pinned: false
license: mit
---
# Agent Tuning Optimization Framework
This Space demonstrates the Agent Tuning Optimization Framework with Negative and Synthetic Samples, a comprehensive solution for efficiently tuning large language models into specialized agents.
## Features
- Generate agent responses for given tasks and user messages
- Create negative samples from positive examples
- Generate synthetic interaction trajectories
## Usage
1. Select a tab for the desired functionality
2. Enter the required information
3. Click the button to generate results
## Learn More
For more information, visit the [GitHub repository](https://github.com/username/agent_tuning_framework).
"""
with open(os.path.join(output_dir, "huggingface", "README.md"), "w") as f:
f.write(hf_readme)
print(f"Deployment package prepared in {output_dir}")
print(f"Hugging Face Space files prepared in {os.path.join(output_dir, 'huggingface')}")
def main():
"""Main function for preparing deployment package."""
parser = argparse.ArgumentParser(description="Prepare deployment package for Agent Tuning Framework")
parser.add_argument("--source", type=str, default=".", help="Source directory containing the framework")
parser.add_argument("--output", type=str, default="./deployment", help="Output directory for deployment package")
parser.add_argument("--config", type=str, help="Path to configuration file")
args = parser.parse_args()
prepare_for_deployment(args.source, args.output, args.config)
if __name__ == "__main__":
main()
|