Spaces:
Runtime error
Runtime error
File size: 16,202 Bytes
39f07e6 f9ea283 00e2a24 f9ea283 39f07e6 1c48967 39f07e6 1c48967 39f07e6 5281b9c 39f07e6 1578d1a 7f5b397 c29bc60 39f07e6 00e2a24 39f07e6 d24de85 39f07e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
'''
!pip install "deepsparse-nightly==1.6.0.20231007"
!pip install "deepsparse[image_classification]"
!pip install opencv-python-headless
!pip uninstall numpy -y
!pip install numpy
!pip install gradio
!pip install pandas
'''
import os
os.system("pip uninstall numpy -y")
os.system("pip install numpy")
os.system("pip install pandas")
import gradio as gr
import sys
from uuid import uuid1
from PIL import Image
from zipfile import ZipFile
import pathlib
import shutil
import pandas as pd
import deepsparse
import json
import numpy as np
rn50_embedding_pipeline_default = deepsparse.Pipeline.create(
task="embedding-extraction",
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
#emb_extraction_layer=-1, # extracts last layer before projection head and softmax
)
rn50_embedding_pipeline_last_1 = deepsparse.Pipeline.create(
task="embedding-extraction",
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
emb_extraction_layer=-1, # extracts last layer before projection head and softmax
)
rn50_embedding_pipeline_last_2 = deepsparse.Pipeline.create(
task="embedding-extraction",
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
emb_extraction_layer=-2, # extracts last layer before projection head and softmax
)
rn50_embedding_pipeline_last_3 = deepsparse.Pipeline.create(
task="embedding-extraction",
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
emb_extraction_layer=-3, # extracts last layer before projection head and softmax
)
rn50_embedding_pipeline_dict = {
"0": rn50_embedding_pipeline_default,
"1": rn50_embedding_pipeline_last_1,
"2": rn50_embedding_pipeline_last_2,
"3": rn50_embedding_pipeline_last_3
}
def zip_ims(g):
from uuid import uuid1
if g is None:
return None
'''
print(g[0])
print(g[0][0])
print(g[0][1])
'''
g = json.loads(g.model_dump_json())
g = list(map(lambda x: {"name": x["image"]["path"]}, g))
l = list(map(lambda x: x["name"], g))
if not l:
return None
zip_file_name ="tmp.zip"
with ZipFile(zip_file_name ,"w") as zipObj:
for ele in l:
zipObj.write(ele, "{}.png".format(uuid1()))
#zipObj.write(file2.name, "file2")
return zip_file_name
def unzip_ims_func(zip_file_name, choose_model,
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
print("call file")
if zip_file_name is None:
return json.dumps({}), None
print("zip_file_name :")
print(zip_file_name)
unzip_path = "img_dir"
if os.path.exists(unzip_path):
shutil.rmtree(unzip_path)
with ZipFile(zip_file_name) as archive:
archive.extractall(unzip_path)
im_name_l = pd.Series(
list(pathlib.Path(unzip_path).rglob("*.png")) + \
list(pathlib.Path(unzip_path).rglob("*.jpg")) + \
list(pathlib.Path(unzip_path).rglob("*.jpeg"))
).map(str).values.tolist()
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
embeddings = rn50_embedding_pipeline(images=im_name_l)
im_l = pd.Series(im_name_l).map(Image.open).values.tolist()
if os.path.exists(unzip_path):
shutil.rmtree(unzip_path)
im_name_l = pd.Series(im_name_l).map(lambda x: x.split("/")[-1]).values.tolist()
return json.dumps({
"names": im_name_l,
"embs": embeddings.embeddings[0]
}), im_l
def emb_img_func(im, choose_model,
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
print("call im :")
if im is None:
return json.dumps({})
im_obj = Image.fromarray(im)
im_name = "{}.png".format(uuid1())
im_obj.save(im_name)
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
embeddings = rn50_embedding_pipeline(images=[im_name])
os.remove(im_name)
return json.dumps({
"names": [im_name],
"embs": embeddings.embeddings[0]
})
def image_grid(imgs, rows, cols):
assert len(imgs) <= rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def image_click(images, evt: gr.SelectData,
choose_model,
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict,
top_k = 5
):
images = json.loads(images.model_dump_json())
images = list(map(lambda x: {"name": x["image"]["path"]}, images))
img_selected = images[evt.index]
pivot_image_path = images[evt.index]['name']
im_name_l = list(map(lambda x: x["name"], images))
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
embeddings = rn50_embedding_pipeline(images=im_name_l)
json_text = json.dumps({
"names": im_name_l,
"embs": embeddings.embeddings[0]
})
assert type(json_text) == type("")
assert type(pivot_image_path) in [type(""), type(0)]
dd_obj = json.loads(json_text)
names = dd_obj["names"]
embs = dd_obj["embs"]
assert pivot_image_path in names
corr_df = pd.DataFrame(np.asarray(embs).T).corr()
corr_df.columns = names
corr_df.index = names
arr_l = []
for i, r in corr_df.iterrows():
arr_ll = sorted(r.to_dict().items(), key = lambda t2: t2[1], reverse = True)
arr_l.append(arr_ll)
top_k = min(len(corr_df), top_k)
cols = pd.Series(arr_l[names.index(pivot_image_path)]).map(lambda x: x[0]).values.tolist()[:top_k]
corr_array_df = pd.DataFrame(arr_l).applymap(lambda x: x[0])
corr_array_df.index = names
#### corr_array
corr_array = corr_array_df.loc[cols].iloc[:, :top_k].values
l_list = pd.Series(corr_array.reshape([-1])).values.tolist()
l_list = pd.Series(l_list).map(Image.open).map(lambda x: expand2square(x, (0, 0, 0))).values.tolist()
l_dist_list = []
for ele in l_list:
if ele not in l_dist_list:
l_dist_list.append(ele)
return l_dist_list, l_list
import gradio as gr
from Lex import *
'''
lex = Lexica(query="man woman fire snow").images()
'''
from PIL import Image
import imagehash
import requests
from zipfile import ZipFile
from time import sleep
sleep_time = 0.5
hash_func_name = list(filter(lambda x: x.endswith("hash") and
"hex" not in x ,dir(imagehash)))
hash_func_name = ['average_hash', 'colorhash', 'dhash', 'phash', 'whash', 'crop_resistant_hash',]
def min_dim_to_size(img, size = 512):
h, w = img.size
ratio = size / max(h, w)
h, w = map(lambda x: int(x * ratio), [h, w])
return ( ratio ,img.resize((h, w)) )
#ratio_size = 512
#ratio, img_rs = min_dim_to_size(img, ratio_size)
'''
def image_click(images, evt: gr.SelectData):
img_selected = images[evt.index]
return images[evt.index]['name']
def swap_gallery(im, images, func_name):
#### name data is_file
#print(images[0].keys())
if im is None:
return list(map(lambda x: x["name"], images))
hash_func = getattr(imagehash, func_name)
im_hash = hash_func(Image.fromarray(im))
t2_list = sorted(images, key = lambda imm:
hash_func(Image.open(imm["name"])) - im_hash, reverse = False)
return list(map(lambda x: x["name"], t2_list))
'''
def lexica(prompt, limit_size = 128, ratio_size = 256 + 128):
lex = Lexica(query=prompt).images()
lex = lex[:limit_size]
lex = list(map(lambda x: x.replace("full_jpg", "sm2"), lex))
lex_ = []
for ele in lex:
try:
im = Image.open(
requests.get(ele, stream = True).raw
)
lex_.append(im)
except:
print("err")
sleep(sleep_time)
assert lex_
lex = list(map(lambda x: min_dim_to_size(x, ratio_size)[1], lex_))
return lex
def enterpix(prompt, limit_size = 100, ratio_size = 256 + 128, use_key = "bigThumbnailUrl"):
resp = requests.post(
url = "https://www.enterpix.app/enterpix/v1/image/prompt-search",
data= {
"length": limit_size,
"platform": "stable-diffusion,midjourney",
"prompt": prompt,
"start": 0
}
)
resp = resp.json()
resp = list(map(lambda x: x[use_key], resp["images"]))
lex_ = []
for ele in resp:
try:
im = Image.open(
requests.get(ele, stream = True).raw
)
lex_.append(im)
except:
print("err")
sleep(sleep_time)
assert lex_
resp = list(map(lambda x: min_dim_to_size(x, ratio_size)[1], lex_))
return resp
#def search(prompt, search_name, im, func_name):
def search(prompt, search_name,):
if search_name == "lexica":
im_l = lexica(prompt)
else:
im_l = enterpix(prompt)
return im_l
'''
if im is None:
return im_l
hash_func = getattr(imagehash, func_name)
im_hash = hash_func(Image.fromarray(im))
t2_list = sorted(im_l, key = lambda imm:
hash_func(imm) - im_hash, reverse = False)
return t2_list
#return list(map(lambda x: x["name"], t2_list))
'''
'''
def zip_ims(g):
from uuid import uuid1
if g is None:
return None
l = list(map(lambda x: x["name"], g))
if not l:
return None
zip_file_name ="tmp.zip"
with ZipFile(zip_file_name ,"w") as zipObj:
for ele in l:
zipObj.write(ele, "{}.png".format(uuid1()))
#zipObj.write(file2.name, "file2")
return zip_file_name
'''
with gr.Blocks(css="custom.css") as demo:
title = gr.HTML(
"""<h1><img src="https://i.imgur.com/dBs990M.png" alt="SD"> StableDiffusion Search by Prompt order by Image Embedding</h1>""",
elem_id="title",
)
with gr.Row():
with gr.Column():
with gr.Row():
search_func_name = gr.Radio(choices=["lexica", "enterpix"],
value="lexica", label="Search by", elem_id="search_radio")
with gr.Row():
#inputs = gr.Textbox(label = 'Enter prompt to search Lexica.art')
inputs = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=20, min_width = 256,
placeholder="Enter prompt to search", elem_id="prompt")
#gr.Slider(label='Number of images ', minimum = 4, maximum = 20, step = 1, value = 4)]
text_button = gr.Button("Retrieve Images", elem_id="run_button")
#i = gr.Image(elem_id="result-image", label = "Image upload or selected", height = 768 - 256 - 32)
with gr.Row():
with gr.Column():
title = gr.Markdown(
value="### Click on a Image in the gallery to select it",
visible=True,
elem_id="selected_model",
)
choose_model = gr.Radio(choices=["0", "1", "2", "3"],
value="0", label="Choose embedding layer", elem_id="layer_radio")
with gr.Row():
g_outputs = gr.Gallery(label='Output gallery', elem_id="gallery",
columns=[5],object_fit="contain", height="auto")
with gr.Column():
sdg_outputs = gr.Gallery(label='Sort Distinct gallery', elem_id="gallery",
columns=[5],object_fit="contain", height="auto")
sg_outputs = gr.Gallery(label='Sort gallery', elem_id="gallery",
columns=[5],object_fit="contain", height="auto")
#order_func_name = gr.Radio(choices=hash_func_name,
#value=hash_func_name[0], label="Order by", elem_id="order_radio")
#gr.Dataframe(label='prompts for corresponding images')]
with gr.Row():
with gr.Tab(label = "Download"):
zip_button = gr.Button("Zip Images to Download", elem_id="zip_button")
downloads = gr.File(label = "Image zipped", elem_id = "zip_file")
with gr.Row():
'''
gr.Examples(
[
["chinese zodiac signs", "lexica", "images/chinese_zodiac_signs.png", "average_hash"],
["trending digital art", "lexica", "images/trending_digital_art.png", "colorhash"],
["masterpiece, best quality, 1girl, solo, crop top, denim shorts, choker, (graffiti:1.5), paint splatter, arms behind back, against wall, looking at viewer, armband, thigh strap, paint on body, head tilt, bored, multicolored hair, aqua eyes, headset,", "lexica", "images/yuzu_girl0.png", "average_hash"],
["beautiful home", "enterpix", "images/beautiful_home.png", "whash"],
["interior design of living room", "enterpix", "images/interior_design_of_living_room.png", "whash"],
["1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt",
"enterpix", "images/waifu_girl0.png", "phash"],
],
inputs = [inputs, search_func_name, i, order_func_name],
label = "Examples"
)
'''
gr.Examples(
[
["Chinese ink painting", "lexica", ],
["silk road", "lexica", ],
["masterpiece, best quality, 1girl, solo, crop top, denim shorts, choker, (graffiti:1.5), paint splatter, arms behind back, against wall, looking at viewer, armband, thigh strap, paint on body, head tilt, bored, multicolored hair, aqua eyes, headset,", "lexica",],
["beautiful home", "enterpix", ],
["interior design of living room", "enterpix", ],
["1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt",
"enterpix", ],
],
inputs = [inputs, search_func_name,],
label = "Examples"
)
#outputs.select(image_click, outputs, i, _js="(x) => x.splice(0,x.length)")
#outputs.select(image_click, outputs, i,)
'''
i.change(
fn=swap_gallery,
inputs=[i, outputs, order_func_name],
outputs=outputs,
queue=False
)
order_func_name.change(
fn=swap_gallery,
inputs=[i, outputs, order_func_name],
outputs=outputs,
queue=False
)
'''
g_outputs.select(image_click,
inputs = [g_outputs, choose_model],
outputs = [sdg_outputs, sg_outputs],)
#### gr.Textbox().submit().success()
### lexica
#text_button.click(lexica, inputs=inputs, outputs=outputs)
### enterpix
#text_button.click(enterpix, inputs=inputs, outputs=outputs)
text_button.click(search, inputs=[inputs, search_func_name,], outputs=g_outputs)
zip_button.click(
zip_ims, inputs = sdg_outputs, outputs=downloads
)
demo.launch("0.0.0.0")
|