Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
!pip install "deepsparse-nightly==1.6.0.20231007"
|
3 |
+
!pip install "deepsparse[image_classification]"
|
4 |
+
!pip install opencv-python-headless
|
5 |
+
!pip uninstall numpy -y
|
6 |
+
!pip install numpy
|
7 |
+
!pip install gradio
|
8 |
+
!pip install pandas
|
9 |
+
'''
|
10 |
+
|
11 |
+
import os
|
12 |
+
|
13 |
+
os.system("pip uninstall numpy -y")
|
14 |
+
os.system("pip install numpy")
|
15 |
+
os.system("pip install pandas")
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
import sys
|
19 |
+
from uuid import uuid1
|
20 |
+
from PIL import Image
|
21 |
+
from zipfile import ZipFile
|
22 |
+
import pathlib
|
23 |
+
import shutil
|
24 |
+
import pandas as pd
|
25 |
+
import deepsparse
|
26 |
+
import json
|
27 |
+
import numpy as np
|
28 |
+
|
29 |
+
rn50_embedding_pipeline_default = deepsparse.Pipeline.create(
|
30 |
+
task="embedding-extraction",
|
31 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
32 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
33 |
+
#emb_extraction_layer=-1, # extracts last layer before projection head and softmax
|
34 |
+
)
|
35 |
+
|
36 |
+
rn50_embedding_pipeline_last_1 = deepsparse.Pipeline.create(
|
37 |
+
task="embedding-extraction",
|
38 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
39 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
40 |
+
emb_extraction_layer=-1, # extracts last layer before projection head and softmax
|
41 |
+
)
|
42 |
+
|
43 |
+
rn50_embedding_pipeline_last_2 = deepsparse.Pipeline.create(
|
44 |
+
task="embedding-extraction",
|
45 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
46 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
47 |
+
emb_extraction_layer=-2, # extracts last layer before projection head and softmax
|
48 |
+
)
|
49 |
+
|
50 |
+
rn50_embedding_pipeline_last_3 = deepsparse.Pipeline.create(
|
51 |
+
task="embedding-extraction",
|
52 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
53 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
54 |
+
emb_extraction_layer=-3, # extracts last layer before projection head and softmax
|
55 |
+
)
|
56 |
+
|
57 |
+
rn50_embedding_pipeline_dict = {
|
58 |
+
"0": rn50_embedding_pipeline_default,
|
59 |
+
"1": rn50_embedding_pipeline_last_1,
|
60 |
+
"2": rn50_embedding_pipeline_last_2,
|
61 |
+
"3": rn50_embedding_pipeline_last_3
|
62 |
+
}
|
63 |
+
|
64 |
+
def zip_ims(g):
|
65 |
+
from uuid import uuid1
|
66 |
+
if g is None:
|
67 |
+
return None
|
68 |
+
l = list(map(lambda x: x["name"], g))
|
69 |
+
if not l:
|
70 |
+
return None
|
71 |
+
zip_file_name ="tmp.zip"
|
72 |
+
with ZipFile(zip_file_name ,"w") as zipObj:
|
73 |
+
for ele in l:
|
74 |
+
zipObj.write(ele, "{}.png".format(uuid1()))
|
75 |
+
#zipObj.write(file2.name, "file2")
|
76 |
+
return zip_file_name
|
77 |
+
|
78 |
+
def unzip_ims_func(zip_file_name, choose_model,
|
79 |
+
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
|
80 |
+
print("call file")
|
81 |
+
if zip_file_name is None:
|
82 |
+
return json.dumps({}), None
|
83 |
+
print("zip_file_name :")
|
84 |
+
print(zip_file_name)
|
85 |
+
unzip_path = "img_dir"
|
86 |
+
if os.path.exists(unzip_path):
|
87 |
+
shutil.rmtree(unzip_path)
|
88 |
+
with ZipFile(zip_file_name) as archive:
|
89 |
+
archive.extractall(unzip_path)
|
90 |
+
im_name_l = pd.Series(
|
91 |
+
list(pathlib.Path(unzip_path).rglob("*.png")) + \
|
92 |
+
list(pathlib.Path(unzip_path).rglob("*.jpg")) + \
|
93 |
+
list(pathlib.Path(unzip_path).rglob("*.jpeg"))
|
94 |
+
).map(str).values.tolist()
|
95 |
+
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
|
96 |
+
embeddings = rn50_embedding_pipeline(images=im_name_l)
|
97 |
+
im_l = pd.Series(im_name_l).map(Image.open).values.tolist()
|
98 |
+
if os.path.exists(unzip_path):
|
99 |
+
shutil.rmtree(unzip_path)
|
100 |
+
im_name_l = pd.Series(im_name_l).map(lambda x: x.split("/")[-1]).values.tolist()
|
101 |
+
return json.dumps({
|
102 |
+
"names": im_name_l,
|
103 |
+
"embs": embeddings.embeddings[0]
|
104 |
+
}), im_l
|
105 |
+
|
106 |
+
|
107 |
+
def emb_img_func(im, choose_model,
|
108 |
+
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
|
109 |
+
print("call im :")
|
110 |
+
if im is None:
|
111 |
+
return json.dumps({})
|
112 |
+
im_obj = Image.fromarray(im)
|
113 |
+
im_name = "{}.png".format(uuid1())
|
114 |
+
im_obj.save(im_name)
|
115 |
+
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
|
116 |
+
embeddings = rn50_embedding_pipeline(images=[im_name])
|
117 |
+
os.remove(im_name)
|
118 |
+
return json.dumps({
|
119 |
+
"names": [im_name],
|
120 |
+
"embs": embeddings.embeddings[0]
|
121 |
+
})
|
122 |
+
|
123 |
+
def image_grid(imgs, rows, cols):
|
124 |
+
assert len(imgs) <= rows*cols
|
125 |
+
w, h = imgs[0].size
|
126 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
127 |
+
grid_w, grid_h = grid.size
|
128 |
+
|
129 |
+
for i, img in enumerate(imgs):
|
130 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
131 |
+
return grid
|
132 |
+
|
133 |
+
def expand2square(pil_img, background_color):
|
134 |
+
width, height = pil_img.size
|
135 |
+
if width == height:
|
136 |
+
return pil_img
|
137 |
+
elif width > height:
|
138 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
139 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
140 |
+
return result
|
141 |
+
else:
|
142 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
143 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
144 |
+
return result
|
145 |
+
|
146 |
+
def image_click(images, evt: gr.SelectData,
|
147 |
+
choose_model,
|
148 |
+
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict,
|
149 |
+
top_k = 5
|
150 |
+
):
|
151 |
+
|
152 |
+
images = json.loads(images.model_dump_json())
|
153 |
+
images = list(map(lambda x: {"name": x["image"]["path"]}, images))
|
154 |
+
|
155 |
+
img_selected = images[evt.index]
|
156 |
+
pivot_image_path = images[evt.index]['name']
|
157 |
+
|
158 |
+
im_name_l = list(map(lambda x: x["name"], images))
|
159 |
+
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
|
160 |
+
embeddings = rn50_embedding_pipeline(images=im_name_l)
|
161 |
+
json_text = json.dumps({
|
162 |
+
"names": im_name_l,
|
163 |
+
"embs": embeddings.embeddings[0]
|
164 |
+
})
|
165 |
+
|
166 |
+
assert type(json_text) == type("")
|
167 |
+
assert type(pivot_image_path) in [type(""), type(0)]
|
168 |
+
dd_obj = json.loads(json_text)
|
169 |
+
names = dd_obj["names"]
|
170 |
+
embs = dd_obj["embs"]
|
171 |
+
|
172 |
+
assert pivot_image_path in names
|
173 |
+
corr_df = pd.DataFrame(np.asarray(embs).T).corr()
|
174 |
+
corr_df.columns = names
|
175 |
+
corr_df.index = names
|
176 |
+
arr_l = []
|
177 |
+
for i, r in corr_df.iterrows():
|
178 |
+
arr_ll = sorted(r.to_dict().items(), key = lambda t2: t2[1], reverse = True)
|
179 |
+
arr_l.append(arr_ll)
|
180 |
+
top_k = min(len(corr_df), top_k)
|
181 |
+
cols = pd.Series(arr_l[names.index(pivot_image_path)]).map(lambda x: x[0]).values.tolist()[:top_k]
|
182 |
+
corr_array_df = pd.DataFrame(arr_l).applymap(lambda x: x[0])
|
183 |
+
corr_array_df.index = names
|
184 |
+
#### corr_array
|
185 |
+
corr_array = corr_array_df.loc[cols].iloc[:, :top_k].values
|
186 |
+
l_list = pd.Series(corr_array.reshape([-1])).values.tolist()
|
187 |
+
l_list = pd.Series(l_list).map(Image.open).map(lambda x: expand2square(x, (0, 0, 0))).values.tolist()
|
188 |
+
l_dist_list = []
|
189 |
+
for ele in l_list:
|
190 |
+
if ele not in l_dist_list:
|
191 |
+
l_dist_list.append(ele)
|
192 |
+
return l_dist_list, l_list
|
193 |
+
|
194 |
+
import gradio as gr
|
195 |
+
from Lex import *
|
196 |
+
'''
|
197 |
+
lex = Lexica(query="man woman fire snow").images()
|
198 |
+
'''
|
199 |
+
from PIL import Image
|
200 |
+
import imagehash
|
201 |
+
import requests
|
202 |
+
|
203 |
+
from zipfile import ZipFile
|
204 |
+
|
205 |
+
from time import sleep
|
206 |
+
sleep_time = 0.5
|
207 |
+
|
208 |
+
hash_func_name = list(filter(lambda x: x.endswith("hash") and
|
209 |
+
"hex" not in x ,dir(imagehash)))
|
210 |
+
hash_func_name = ['average_hash', 'colorhash', 'dhash', 'phash', 'whash', 'crop_resistant_hash',]
|
211 |
+
|
212 |
+
def min_dim_to_size(img, size = 512):
|
213 |
+
h, w = img.size
|
214 |
+
ratio = size / max(h, w)
|
215 |
+
h, w = map(lambda x: int(x * ratio), [h, w])
|
216 |
+
return ( ratio ,img.resize((h, w)) )
|
217 |
+
|
218 |
+
#ratio_size = 512
|
219 |
+
#ratio, img_rs = min_dim_to_size(img, ratio_size)
|
220 |
+
|
221 |
+
'''
|
222 |
+
def image_click(images, evt: gr.SelectData):
|
223 |
+
img_selected = images[evt.index]
|
224 |
+
return images[evt.index]['name']
|
225 |
+
|
226 |
+
def swap_gallery(im, images, func_name):
|
227 |
+
#### name data is_file
|
228 |
+
#print(images[0].keys())
|
229 |
+
if im is None:
|
230 |
+
return list(map(lambda x: x["name"], images))
|
231 |
+
hash_func = getattr(imagehash, func_name)
|
232 |
+
|
233 |
+
im_hash = hash_func(Image.fromarray(im))
|
234 |
+
t2_list = sorted(images, key = lambda imm:
|
235 |
+
hash_func(Image.open(imm["name"])) - im_hash, reverse = False)
|
236 |
+
return list(map(lambda x: x["name"], t2_list))
|
237 |
+
'''
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
def lexica(prompt, limit_size = 128, ratio_size = 256 + 128):
|
242 |
+
lex = Lexica(query=prompt).images()
|
243 |
+
lex = lex[:limit_size]
|
244 |
+
lex = list(map(lambda x: x.replace("full_jpg", "sm2"), lex))
|
245 |
+
lex_ = []
|
246 |
+
for ele in lex:
|
247 |
+
try:
|
248 |
+
im = Image.open(
|
249 |
+
requests.get(ele, stream = True).raw
|
250 |
+
)
|
251 |
+
lex_.append(im)
|
252 |
+
except:
|
253 |
+
print("err")
|
254 |
+
sleep(sleep_time)
|
255 |
+
assert lex_
|
256 |
+
lex = list(map(lambda x: min_dim_to_size(x, ratio_size)[1], lex_))
|
257 |
+
return lex
|
258 |
+
|
259 |
+
def enterpix(prompt, limit_size = 100, ratio_size = 256 + 128, use_key = "bigThumbnailUrl"):
|
260 |
+
resp = requests.post(
|
261 |
+
url = "https://www.enterpix.app/enterpix/v1/image/prompt-search",
|
262 |
+
data= {
|
263 |
+
"length": limit_size,
|
264 |
+
"platform": "stable-diffusion,midjourney",
|
265 |
+
"prompt": prompt,
|
266 |
+
"start": 0
|
267 |
+
}
|
268 |
+
)
|
269 |
+
resp = resp.json()
|
270 |
+
resp = list(map(lambda x: x[use_key], resp["images"]))
|
271 |
+
lex_ = []
|
272 |
+
for ele in resp:
|
273 |
+
try:
|
274 |
+
im = Image.open(
|
275 |
+
requests.get(ele, stream = True).raw
|
276 |
+
)
|
277 |
+
lex_.append(im)
|
278 |
+
except:
|
279 |
+
print("err")
|
280 |
+
sleep(sleep_time)
|
281 |
+
assert lex_
|
282 |
+
resp = list(map(lambda x: min_dim_to_size(x, ratio_size)[1], lex_))
|
283 |
+
return resp
|
284 |
+
|
285 |
+
#def search(prompt, search_name, im, func_name):
|
286 |
+
def search(prompt, search_name,):
|
287 |
+
if search_name == "lexica":
|
288 |
+
im_l = lexica(prompt)
|
289 |
+
else:
|
290 |
+
im_l = enterpix(prompt)
|
291 |
+
return im_l
|
292 |
+
'''
|
293 |
+
if im is None:
|
294 |
+
return im_l
|
295 |
+
hash_func = getattr(imagehash, func_name)
|
296 |
+
|
297 |
+
im_hash = hash_func(Image.fromarray(im))
|
298 |
+
t2_list = sorted(im_l, key = lambda imm:
|
299 |
+
hash_func(imm) - im_hash, reverse = False)
|
300 |
+
return t2_list
|
301 |
+
#return list(map(lambda x: x["name"], t2_list))
|
302 |
+
'''
|
303 |
+
|
304 |
+
def zip_ims(g):
|
305 |
+
from uuid import uuid1
|
306 |
+
if g is None:
|
307 |
+
return None
|
308 |
+
l = list(map(lambda x: x["name"], g))
|
309 |
+
if not l:
|
310 |
+
return None
|
311 |
+
zip_file_name ="tmp.zip"
|
312 |
+
with ZipFile(zip_file_name ,"w") as zipObj:
|
313 |
+
for ele in l:
|
314 |
+
zipObj.write(ele, "{}.png".format(uuid1()))
|
315 |
+
#zipObj.write(file2.name, "file2")
|
316 |
+
return zip_file_name
|
317 |
+
|
318 |
+
with gr.Blocks(css="custom.css") as demo:
|
319 |
+
title = gr.HTML(
|
320 |
+
"""<h1><img src="https://i.imgur.com/52VJ8vS.png" alt="SD"> StableDiffusion Search by Prompt order by Image</h1>""",
|
321 |
+
elem_id="title",
|
322 |
+
)
|
323 |
+
|
324 |
+
with gr.Row():
|
325 |
+
with gr.Column():
|
326 |
+
with gr.Row():
|
327 |
+
search_func_name = gr.Radio(choices=["lexica", "enterpix"],
|
328 |
+
value="lexica", label="Search by", elem_id="search_radio")
|
329 |
+
with gr.Row():
|
330 |
+
#inputs = gr.Textbox(label = 'Enter prompt to search Lexica.art')
|
331 |
+
inputs = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=20, min_width = 256,
|
332 |
+
placeholder="Enter prompt to search", elem_id="prompt")
|
333 |
+
#gr.Slider(label='Number of images ', minimum = 4, maximum = 20, step = 1, value = 4)]
|
334 |
+
text_button = gr.Button("Retrieve Images", elem_id="run_button")
|
335 |
+
#i = gr.Image(elem_id="result-image", label = "Image upload or selected", height = 768 - 256 - 32)
|
336 |
+
with gr.Row():
|
337 |
+
title = gr.Markdown(
|
338 |
+
value="### Click on a Image in the gallery to select it",
|
339 |
+
visible=True,
|
340 |
+
elem_id="selected_model",
|
341 |
+
)
|
342 |
+
choose_model = gr.Radio(choices=["0", "1", "2", "3"],
|
343 |
+
value="0", label="Choose embedding layer", elem_id="layer_radio")
|
344 |
+
g_outputs = gr.Gallery(lable='Output gallery', elem_id="gallery",).style(grid=5,height=768 + 64 + 32,
|
345 |
+
allow_preview=False, label = "retrieve Images")
|
346 |
+
with gr.Row():
|
347 |
+
with gr.Tab(label = "Download"):
|
348 |
+
zip_button = gr.Button("Zip Images to Download", elem_id="zip_button")
|
349 |
+
downloads = gr.File(label = "Image zipped", elem_id = "zip_file")
|
350 |
+
|
351 |
+
with gr.Column():
|
352 |
+
sdg_outputs = gr.Gallery(label='Sort Distinct gallery', elem_id="gallery",
|
353 |
+
columns=[5],object_fit="contain", height="auto")
|
354 |
+
sg_outputs = gr.Gallery(label='Sort gallery', elem_id="gallery",
|
355 |
+
columns=[5],object_fit="contain", height="auto")
|
356 |
+
#order_func_name = gr.Radio(choices=hash_func_name,
|
357 |
+
#value=hash_func_name[0], label="Order by", elem_id="order_radio")
|
358 |
+
#gr.Dataframe(label='prompts for corresponding images')]
|
359 |
+
|
360 |
+
|
361 |
+
with gr.Row():
|
362 |
+
'''
|
363 |
+
gr.Examples(
|
364 |
+
[
|
365 |
+
["chinese zodiac signs", "lexica", "images/chinese_zodiac_signs.png", "average_hash"],
|
366 |
+
["trending digital art", "lexica", "images/trending_digital_art.png", "colorhash"],
|
367 |
+
["masterpiece, best quality, 1girl, solo, crop top, denim shorts, choker, (graffiti:1.5), paint splatter, arms behind back, against wall, looking at viewer, armband, thigh strap, paint on body, head tilt, bored, multicolored hair, aqua eyes, headset,", "lexica", "images/yuzu_girl0.png", "average_hash"],
|
368 |
+
["beautiful home", "enterpix", "images/beautiful_home.png", "whash"],
|
369 |
+
["interior design of living room", "enterpix", "images/interior_design_of_living_room.png", "whash"],
|
370 |
+
["1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt",
|
371 |
+
"enterpix", "images/waifu_girl0.png", "phash"],
|
372 |
+
],
|
373 |
+
inputs = [inputs, search_func_name, i, order_func_name],
|
374 |
+
label = "Examples"
|
375 |
+
)
|
376 |
+
'''
|
377 |
+
gr.Examples(
|
378 |
+
[
|
379 |
+
["chinese zodiac signs", "lexica", ],
|
380 |
+
["trending digital art", "lexica", ],
|
381 |
+
["masterpiece, best quality, 1girl, solo, crop top, denim shorts, choker, (graffiti:1.5), paint splatter, arms behind back, against wall, looking at viewer, armband, thigh strap, paint on body, head tilt, bored, multicolored hair, aqua eyes, headset,", "lexica",],
|
382 |
+
["beautiful home", "enterpix", ],
|
383 |
+
["interior design of living room", "enterpix", ],
|
384 |
+
["1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt",
|
385 |
+
"enterpix", ],
|
386 |
+
],
|
387 |
+
inputs = [inputs, search_func_name,],
|
388 |
+
label = "Examples"
|
389 |
+
)
|
390 |
+
|
391 |
+
|
392 |
+
#outputs.select(image_click, outputs, i, _js="(x) => x.splice(0,x.length)")
|
393 |
+
#outputs.select(image_click, outputs, i,)
|
394 |
+
'''
|
395 |
+
i.change(
|
396 |
+
fn=swap_gallery,
|
397 |
+
inputs=[i, outputs, order_func_name],
|
398 |
+
outputs=outputs,
|
399 |
+
queue=False
|
400 |
+
)
|
401 |
+
order_func_name.change(
|
402 |
+
fn=swap_gallery,
|
403 |
+
inputs=[i, outputs, order_func_name],
|
404 |
+
outputs=outputs,
|
405 |
+
queue=False
|
406 |
+
)
|
407 |
+
'''
|
408 |
+
|
409 |
+
|
410 |
+
g_outputs.select(image_click,
|
411 |
+
inputs = [g_outputs, choose_model],
|
412 |
+
outputs = [sdg_outputs, sg_outputs],)
|
413 |
+
|
414 |
+
#### gr.Textbox().submit().success()
|
415 |
+
|
416 |
+
### lexica
|
417 |
+
#text_button.click(lexica, inputs=inputs, outputs=outputs)
|
418 |
+
### enterpix
|
419 |
+
#text_button.click(enterpix, inputs=inputs, outputs=outputs)
|
420 |
+
text_button.click(search, inputs=[inputs, search_func_name,], outputs=g_outputs)
|
421 |
+
|
422 |
+
zip_button.click(
|
423 |
+
zip_ims, inputs = sdg_outputs, outputs=downloads
|
424 |
+
)
|
425 |
+
|
426 |
+
demo.launch("0.0.0.0")
|