File size: 5,077 Bytes
66e03d0
ee0d36c
edadc17
ee0d36c
 
 
 
66e03d0
 
 
 
 
 
 
 
840f873
66e03d0
62f5bba
66e03d0
 
 
62f5bba
66e03d0
 
62f5bba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e03d0
 
 
 
 
 
 
 
 
 
 
 
 
 
62f5bba
 
66e03d0
 
1bbdbbd
66e03d0
 
 
 
 
 
 
 
 
 
62f5bba
66e03d0
 
 
afa6954
1bbdbbd
66e03d0
fafb9b3
1bbdbbd
66e03d0
 
62f5bba
 
66e03d0
 
1bbdbbd
66e03d0
 
 
62f5bba
66e03d0
 
1bbdbbd
66e03d0
fafb9b3
1bbdbbd
66e03d0
 
 
 
 
 
 
 
 
 
 
 
62f5bba
 
 
66e03d0
 
 
 
 
 
 
 
25839ed
66e03d0
53b4108
 
66e03d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os

os.system("pip uninstall numpy -y")
os.system("pip install numpy")
os.system("pip install pandas")

import gradio as gr
import sys
from uuid import uuid1
from PIL import Image
from zipfile import ZipFile
import pathlib
import shutil
import pandas as pd
import deepsparse
import json

rn50_embedding_pipeline_default = deepsparse.Pipeline.create(
    task="embedding-extraction",
    base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
    model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
    #emb_extraction_layer=-1, # extracts last layer before projection head and softmax
)

rn50_embedding_pipeline_last_1 = deepsparse.Pipeline.create(
    task="embedding-extraction",
    base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
    model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
    emb_extraction_layer=-1, # extracts last layer before projection head and softmax
)

rn50_embedding_pipeline_last_2 = deepsparse.Pipeline.create(
    task="embedding-extraction",
    base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
    model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
    emb_extraction_layer=-2, # extracts last layer before projection head and softmax
)

rn50_embedding_pipeline_last_3 = deepsparse.Pipeline.create(
    task="embedding-extraction",
    base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
    model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
    emb_extraction_layer=-3, # extracts last layer before projection head and softmax
)

rn50_embedding_pipeline_dict = {
    "0": rn50_embedding_pipeline_default,
    "1": rn50_embedding_pipeline_last_1,
    "2": rn50_embedding_pipeline_last_2,
    "3": rn50_embedding_pipeline_last_3
}

def zip_ims(g):
    from uuid import uuid1
    if g is None:
        return None
    l = list(map(lambda x: x["name"], g))
    if not l:
        return None
    zip_file_name ="tmp.zip"
    with ZipFile(zip_file_name ,"w") as zipObj:
        for ele in l:
            zipObj.write(ele, "{}.png".format(uuid1()))
        #zipObj.write(file2.name, "file2")
    return zip_file_name

def unzip_ims_func(zip_file_name, choose_model,
    rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
    print("call file")
    if zip_file_name is None:
        return json.dumps({})
    unzip_path = "img_dir"
    if os.path.exists(unzip_path):
        shutil.rmtree(unzip_path)
    with ZipFile(zip_file_name) as archive:
        archive.extractall(unzip_path)
    im_name_l = pd.Series(
    list(pathlib.Path(unzip_path).rglob("*.png")) + \
    list(pathlib.Path(unzip_path).rglob("*.jpg")) + \
    list(pathlib.Path(unzip_path).rglob("*.jpeg"))
    ).map(str).values.tolist()
    rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
    embeddings = rn50_embedding_pipeline(images=im_name_l)
    if os.path.exists(unzip_path):
        shutil.rmtree(unzip_path)
    im_name_l = pd.Series(im_name_l).map(lambda x: x.split("/")[-1]).values.tolist()
    return json.dumps({
        "names": im_name_l,
        "embs": embeddings.embeddings[0]
    })


def emb_img_func(im, choose_model,
    rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
    print("call im :")
    if im is None:
        return json.dumps({})
    im_obj = Image.fromarray(im)
    im_name = "{}.png".format(uuid1())
    im_obj.save(im_name)
    rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
    embeddings = rn50_embedding_pipeline(images=[im_name])
    os.remove(im_name)
    return json.dumps({
        "names": [im_name],
        "embs": embeddings.embeddings[0]
    })

'''
def emb_gallery_func(gallery):
    print("call ga :")
    if gallery is None:
        return []
    im_name_l = list(map(lambda x: x["name"], images))
    embeddings = rn50_embedding_pipeline(images=im_name_l)
    return embeddings
'''

with gr.Blocks() as demo:
    with gr.Row():
        choose_model = gr.Radio(choices=["0", "1", "2", "3"],
        value="0", label="Choose embedding layer", elem_id="layer_radio")
    with gr.Row():
        with gr.Column():
            inputs_0 = gr.Image(label = "Input Image for embed")
            button_0 = gr.Button("Image button")
        with gr.Column():
            inputs_1 = gr.File(label = "Input Images zip file for embed")
            button_1 = gr.Button("Image File button")
    with gr.Row():
        outputs = gr.Text(label = "Output Embeddings")

    button_0.click(fn = emb_img_func, inputs = [inputs_0, choose_model], outputs = outputs)
    button_1.click(fn = unzip_ims_func, inputs = [inputs_1, choose_model], outputs = outputs)

demo.launch("0.0.0.0")