Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,16 +12,43 @@ from zipfile import ZipFile
|
|
12 |
import pathlib
|
13 |
import shutil
|
14 |
import pandas as pd
|
15 |
-
import json
|
16 |
import deepsparse
|
17 |
|
18 |
-
|
19 |
task="embedding-extraction",
|
20 |
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
21 |
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
22 |
-
#emb_extraction_layer=-
|
23 |
)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def zip_ims(g):
|
26 |
from uuid import uuid1
|
27 |
if g is None:
|
@@ -36,7 +63,8 @@ def zip_ims(g):
|
|
36 |
#zipObj.write(file2.name, "file2")
|
37 |
return zip_file_name
|
38 |
|
39 |
-
def
|
|
|
40 |
print("call file")
|
41 |
if zip_file_name is None:
|
42 |
return json.dumps({})
|
@@ -50,6 +78,7 @@ def unzip_ims(zip_file_name):
|
|
50 |
list(pathlib.Path(unzip_path).rglob("*.jpg")) + \
|
51 |
list(pathlib.Path(unzip_path).rglob("*.jpeg"))
|
52 |
).map(str).values.tolist()
|
|
|
53 |
embeddings = rn50_embedding_pipeline(images=im_name_l)
|
54 |
if os.path.exists(unzip_path):
|
55 |
shutil.rmtree(unzip_path)
|
@@ -60,13 +89,15 @@ def unzip_ims(zip_file_name):
|
|
60 |
})
|
61 |
|
62 |
|
63 |
-
def emb_img_func(im
|
|
|
64 |
print("call im :")
|
65 |
if im is None:
|
66 |
return json.dumps({})
|
67 |
im_obj = Image.fromarray(im)
|
68 |
im_name = "{}.png".format(uuid1())
|
69 |
im_obj.save(im_name)
|
|
|
70 |
embeddings = rn50_embedding_pipeline(images=[im_name])
|
71 |
os.remove(im_name)
|
72 |
return json.dumps({
|
@@ -85,6 +116,9 @@ def emb_gallery_func(gallery):
|
|
85 |
'''
|
86 |
|
87 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
88 |
with gr.Row():
|
89 |
with gr.Column():
|
90 |
inputs_0 = gr.Image(label = "Input Image for embed")
|
@@ -96,6 +130,6 @@ with gr.Blocks() as demo:
|
|
96 |
outputs = gr.Text(label = "Output Embeddings")
|
97 |
|
98 |
button_0.click(fn = emb_img_func, inputs = inputs_0, outputs = outputs)
|
99 |
-
button_1.click(fn =
|
100 |
|
101 |
demo.launch("0.0.0.0")
|
|
|
12 |
import pathlib
|
13 |
import shutil
|
14 |
import pandas as pd
|
|
|
15 |
import deepsparse
|
16 |
|
17 |
+
rn50_embedding_pipeline_default = deepsparse.Pipeline.create(
|
18 |
task="embedding-extraction",
|
19 |
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
20 |
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
21 |
+
#emb_extraction_layer=-1, # extracts last layer before projection head and softmax
|
22 |
)
|
23 |
|
24 |
+
rn50_embedding_pipeline_last_1 = deepsparse.Pipeline.create(
|
25 |
+
task="embedding-extraction",
|
26 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
27 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
28 |
+
emb_extraction_layer=-1, # extracts last layer before projection head and softmax
|
29 |
+
)
|
30 |
+
|
31 |
+
rn50_embedding_pipeline_last_2 = deepsparse.Pipeline.create(
|
32 |
+
task="embedding-extraction",
|
33 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
34 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
35 |
+
emb_extraction_layer=-2, # extracts last layer before projection head and softmax
|
36 |
+
)
|
37 |
+
|
38 |
+
rn50_embedding_pipeline_last_3 = deepsparse.Pipeline.create(
|
39 |
+
task="embedding-extraction",
|
40 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
41 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
42 |
+
emb_extraction_layer=-3, # extracts last layer before projection head and softmax
|
43 |
+
)
|
44 |
+
|
45 |
+
rn50_embedding_pipeline_dict = {
|
46 |
+
"0": rn50_embedding_pipeline_default,
|
47 |
+
"1": rn50_embedding_pipeline_last_1,
|
48 |
+
"2": rn50_embedding_pipeline_last_2,
|
49 |
+
"3": rn50_embedding_pipeline_last_3
|
50 |
+
}
|
51 |
+
|
52 |
def zip_ims(g):
|
53 |
from uuid import uuid1
|
54 |
if g is None:
|
|
|
63 |
#zipObj.write(file2.name, "file2")
|
64 |
return zip_file_name
|
65 |
|
66 |
+
def unzip_ims_func(zip_file_name, choose_model,
|
67 |
+
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
|
68 |
print("call file")
|
69 |
if zip_file_name is None:
|
70 |
return json.dumps({})
|
|
|
78 |
list(pathlib.Path(unzip_path).rglob("*.jpg")) + \
|
79 |
list(pathlib.Path(unzip_path).rglob("*.jpeg"))
|
80 |
).map(str).values.tolist()
|
81 |
+
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
|
82 |
embeddings = rn50_embedding_pipeline(images=im_name_l)
|
83 |
if os.path.exists(unzip_path):
|
84 |
shutil.rmtree(unzip_path)
|
|
|
89 |
})
|
90 |
|
91 |
|
92 |
+
def emb_img_func(im, choose_model,
|
93 |
+
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
|
94 |
print("call im :")
|
95 |
if im is None:
|
96 |
return json.dumps({})
|
97 |
im_obj = Image.fromarray(im)
|
98 |
im_name = "{}.png".format(uuid1())
|
99 |
im_obj.save(im_name)
|
100 |
+
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
|
101 |
embeddings = rn50_embedding_pipeline(images=[im_name])
|
102 |
os.remove(im_name)
|
103 |
return json.dumps({
|
|
|
116 |
'''
|
117 |
|
118 |
with gr.Blocks() as demo:
|
119 |
+
with gr.Row():
|
120 |
+
choose_model = gr.Radio(choices=["0", "1", "2", "3"],
|
121 |
+
value="0", label="Choose embedding layer", elem_id="layer_radio")
|
122 |
with gr.Row():
|
123 |
with gr.Column():
|
124 |
inputs_0 = gr.Image(label = "Input Image for embed")
|
|
|
130 |
outputs = gr.Text(label = "Output Embeddings")
|
131 |
|
132 |
button_0.click(fn = emb_img_func, inputs = inputs_0, outputs = outputs)
|
133 |
+
button_1.click(fn = unzip_ims_func, inputs = inputs_1, outputs = outputs)
|
134 |
|
135 |
demo.launch("0.0.0.0")
|