File size: 9,207 Bytes
825cf2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321014a
825cf2e
 
 
 
 
 
 
 
7f90038
f3e2729
7f90038
 
 
825cf2e
 
 
 
 
 
 
 
 
7f90038
 
 
 
 
 
 
 
 
825cf2e
 
 
 
 
 
 
 
 
7f90038
 
 
 
 
 
 
 
 
 
 
 
 
 
0ddca41
7f90038
 
825cf2e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
'''
!pip install "deepsparse-nightly==1.6.0.20231007"
!pip install "deepsparse[image_classification]"
!pip install opencv-python-headless
!pip uninstall numpy -y
!pip install numpy
!pip install gradio
!pip install pandas
'''

import os

os.system("pip uninstall numpy -y")
os.system("pip install numpy")
os.system("pip install pandas")

import gradio as gr
import sys
from uuid import uuid1
from PIL import Image
from zipfile import ZipFile
import pathlib
import shutil
import pandas as pd
import deepsparse
import json
import numpy as np

rn50_embedding_pipeline_default = deepsparse.Pipeline.create(
    task="embedding-extraction",
    base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
    model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
    #emb_extraction_layer=-1, # extracts last layer before projection head and softmax
)

rn50_embedding_pipeline_last_1 = deepsparse.Pipeline.create(
    task="embedding-extraction",
    base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
    model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
    emb_extraction_layer=-1, # extracts last layer before projection head and softmax
)

rn50_embedding_pipeline_last_2 = deepsparse.Pipeline.create(
    task="embedding-extraction",
    base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
    model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
    emb_extraction_layer=-2, # extracts last layer before projection head and softmax
)

rn50_embedding_pipeline_last_3 = deepsparse.Pipeline.create(
    task="embedding-extraction",
    base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
    model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
    emb_extraction_layer=-3, # extracts last layer before projection head and softmax
)

rn50_embedding_pipeline_dict = {
    "0": rn50_embedding_pipeline_default,
    "1": rn50_embedding_pipeline_last_1,
    "2": rn50_embedding_pipeline_last_2,
    "3": rn50_embedding_pipeline_last_3
}

def zip_ims(g):
    from uuid import uuid1
    if g is None:
        return None
    l = list(map(lambda x: x["name"], g))
    if not l:
        return None
    zip_file_name ="tmp.zip"
    with ZipFile(zip_file_name ,"w") as zipObj:
        for ele in l:
            zipObj.write(ele, "{}.png".format(uuid1()))
        #zipObj.write(file2.name, "file2")
    return zip_file_name

def unzip_ims_func(zip_file_name, choose_model,
    rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
    print("call file")
    if zip_file_name is None:
        return json.dumps({}), None
    print("zip_file_name :")
    print(zip_file_name)
    unzip_path = "img_dir"
    if os.path.exists(unzip_path):
        shutil.rmtree(unzip_path)
    with ZipFile(zip_file_name) as archive:
        archive.extractall(unzip_path)
    im_name_l = pd.Series(
    list(pathlib.Path(unzip_path).rglob("*.png")) + \
    list(pathlib.Path(unzip_path).rglob("*.jpg")) + \
    list(pathlib.Path(unzip_path).rglob("*.jpeg"))
    ).map(str).values.tolist()
    rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
    embeddings = rn50_embedding_pipeline(images=im_name_l)
    im_l = pd.Series(im_name_l).map(Image.open).values.tolist()
    if os.path.exists(unzip_path):
        shutil.rmtree(unzip_path)
    im_name_l = pd.Series(im_name_l).map(lambda x: x.split("/")[-1]).values.tolist()
    return json.dumps({
        "names": im_name_l,
        "embs": embeddings.embeddings[0]
    }), im_l


def emb_img_func(im, choose_model,
    rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
    print("call im :")
    if im is None:
        return json.dumps({})
    im_obj = Image.fromarray(im)
    im_name = "{}.png".format(uuid1())
    im_obj.save(im_name)
    rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
    embeddings = rn50_embedding_pipeline(images=[im_name])
    os.remove(im_name)
    return json.dumps({
        "names": [im_name],
        "embs": embeddings.embeddings[0]
    })

def image_grid(imgs, rows, cols):
    assert len(imgs) <= rows*cols
    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid

def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result

def image_click(images, evt: gr.SelectData,
    choose_model,
    rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict,
    top_k = 5
    ):

    images = json.loads(images.model_dump_json())
    images = list(map(lambda x: {"name": x["image"]["path"]}, images))

    img_selected = images[evt.index]
    pivot_image_path = images[evt.index]['name']

    im_name_l = list(map(lambda x: x["name"], images))
    rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
    embeddings = rn50_embedding_pipeline(images=im_name_l)
    json_text = json.dumps({
        "names": im_name_l,
        "embs": embeddings.embeddings[0]
    })

    assert type(json_text) == type("")
    assert type(pivot_image_path) in [type(""), type(0)]
    dd_obj = json.loads(json_text)
    names = dd_obj["names"]
    embs = dd_obj["embs"]

    assert pivot_image_path in names
    corr_df = pd.DataFrame(np.asarray(embs).T).corr()
    corr_df.columns = names
    corr_df.index = names
    arr_l = []
    for i, r in corr_df.iterrows():
        arr_ll = sorted(r.to_dict().items(), key = lambda t2: t2[1], reverse = True)
        arr_l.append(arr_ll)
    top_k = min(len(corr_df), top_k)
    cols = pd.Series(arr_l[names.index(pivot_image_path)]).map(lambda x: x[0]).values.tolist()[:top_k]
    corr_array_df = pd.DataFrame(arr_l).applymap(lambda x: x[0])
    corr_array_df.index = names
    #### corr_array
    corr_array = corr_array_df.loc[cols].iloc[:, :top_k].values
    l_list = pd.Series(corr_array.reshape([-1])).values.tolist()
    l_list = pd.Series(l_list).map(Image.open).map(lambda x: expand2square(x, (0, 0, 0))).values.tolist()
    l_dist_list = []
    for ele in l_list:
        if ele not in l_dist_list:
            l_dist_list.append(ele)
    return l_dist_list, l_list


with gr.Blocks() as demo:
    title = gr.HTML(
            """<h1> Deepsparse Image Embedding </h1>""",
            elem_id="title",
    )

    with gr.Row():
        with gr.Column():
            inputs_0 = gr.Image(label = "Input Image for embed")
            button_0 = gr.Button("Image button")
        with gr.Column():
            inputs_1 = gr.File(label = "Input Images zip file for embed")
            button_1 = gr.Button("Image File button")
    with gr.Row():
        with gr.Column():
            with gr.Row():
                title = gr.Markdown(
                    value="### Click on a Image in the gallery to select it",
                    visible=True,
                    elem_id="selected_model",
                )
                choose_model = gr.Radio(choices=["0", "1", "2", "3"],
            value="0", label="Choose embedding layer", elem_id="layer_radio")

            g_outputs = gr.Gallery(label='Output gallery', elem_id="gallery",
            columns=[5],object_fit="contain", height="auto")
            outputs = gr.Text(label = "Output Embeddings")
        with gr.Column():
            sdg_outputs = gr.Gallery(label='Sort Distinct gallery', elem_id="gallery",
            columns=[5],object_fit="contain", height="auto")
            sg_outputs = gr.Gallery(label='Sort gallery', elem_id="gallery",
            columns=[5],object_fit="contain", height="auto")

    with gr.Row():
        gr.Examples(
                [
                    "Anything_V5.png",
                    "waifu_girl0.png",
                ],
                inputs = inputs_0,
                label = "Image Examples"
        )
        gr.Examples(
                [
                    "rose_love_imgs.zip",
                    "beautiful_room_imgs.zip"
                ],
                inputs = inputs_1,
                label = "Image Zip file Examples"
        )

    button_0.click(fn = emb_img_func, inputs = [inputs_0, choose_model], outputs = outputs)
    button_1.click(fn = unzip_ims_func, inputs = [inputs_1, choose_model],
        outputs = [outputs, g_outputs])

    g_outputs.select(image_click,
        inputs = [g_outputs, choose_model],
        outputs = [sdg_outputs, sg_outputs],)

demo.launch("0.0.0.0")