Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
!pip install "deepsparse-nightly==1.6.0.20231007"
|
3 |
+
!pip install "deepsparse[image_classification]"
|
4 |
+
!pip install opencv-python-headless
|
5 |
+
!pip uninstall numpy -y
|
6 |
+
!pip install numpy
|
7 |
+
!pip install gradio
|
8 |
+
!pip install pandas
|
9 |
+
'''
|
10 |
+
|
11 |
+
import os
|
12 |
+
|
13 |
+
os.system("pip uninstall numpy -y")
|
14 |
+
os.system("pip install numpy")
|
15 |
+
os.system("pip install pandas")
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
import sys
|
19 |
+
from uuid import uuid1
|
20 |
+
from PIL import Image
|
21 |
+
from zipfile import ZipFile
|
22 |
+
import pathlib
|
23 |
+
import shutil
|
24 |
+
import pandas as pd
|
25 |
+
import deepsparse
|
26 |
+
import json
|
27 |
+
import numpy as np
|
28 |
+
|
29 |
+
rn50_embedding_pipeline_default = deepsparse.Pipeline.create(
|
30 |
+
task="embedding-extraction",
|
31 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
32 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
33 |
+
#emb_extraction_layer=-1, # extracts last layer before projection head and softmax
|
34 |
+
)
|
35 |
+
|
36 |
+
rn50_embedding_pipeline_last_1 = deepsparse.Pipeline.create(
|
37 |
+
task="embedding-extraction",
|
38 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
39 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
40 |
+
emb_extraction_layer=-1, # extracts last layer before projection head and softmax
|
41 |
+
)
|
42 |
+
|
43 |
+
rn50_embedding_pipeline_last_2 = deepsparse.Pipeline.create(
|
44 |
+
task="embedding-extraction",
|
45 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
46 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
47 |
+
emb_extraction_layer=-2, # extracts last layer before projection head and softmax
|
48 |
+
)
|
49 |
+
|
50 |
+
rn50_embedding_pipeline_last_3 = deepsparse.Pipeline.create(
|
51 |
+
task="embedding-extraction",
|
52 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
53 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
54 |
+
emb_extraction_layer=-3, # extracts last layer before projection head and softmax
|
55 |
+
)
|
56 |
+
|
57 |
+
rn50_embedding_pipeline_dict = {
|
58 |
+
"0": rn50_embedding_pipeline_default,
|
59 |
+
"1": rn50_embedding_pipeline_last_1,
|
60 |
+
"2": rn50_embedding_pipeline_last_2,
|
61 |
+
"3": rn50_embedding_pipeline_last_3
|
62 |
+
}
|
63 |
+
|
64 |
+
def zip_ims(g):
|
65 |
+
from uuid import uuid1
|
66 |
+
if g is None:
|
67 |
+
return None
|
68 |
+
l = list(map(lambda x: x["name"], g))
|
69 |
+
if not l:
|
70 |
+
return None
|
71 |
+
zip_file_name ="tmp.zip"
|
72 |
+
with ZipFile(zip_file_name ,"w") as zipObj:
|
73 |
+
for ele in l:
|
74 |
+
zipObj.write(ele, "{}.png".format(uuid1()))
|
75 |
+
#zipObj.write(file2.name, "file2")
|
76 |
+
return zip_file_name
|
77 |
+
|
78 |
+
def unzip_ims_func(zip_file_name, choose_model,
|
79 |
+
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
|
80 |
+
print("call file")
|
81 |
+
if zip_file_name is None:
|
82 |
+
return json.dumps({}), None
|
83 |
+
print("zip_file_name :")
|
84 |
+
print(zip_file_name)
|
85 |
+
unzip_path = "img_dir"
|
86 |
+
if os.path.exists(unzip_path):
|
87 |
+
shutil.rmtree(unzip_path)
|
88 |
+
with ZipFile(zip_file_name) as archive:
|
89 |
+
archive.extractall(unzip_path)
|
90 |
+
im_name_l = pd.Series(
|
91 |
+
list(pathlib.Path(unzip_path).rglob("*.png")) + \
|
92 |
+
list(pathlib.Path(unzip_path).rglob("*.jpg")) + \
|
93 |
+
list(pathlib.Path(unzip_path).rglob("*.jpeg"))
|
94 |
+
).map(str).values.tolist()
|
95 |
+
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
|
96 |
+
embeddings = rn50_embedding_pipeline(images=im_name_l)
|
97 |
+
im_l = pd.Series(im_name_l).map(Image.open).values.tolist()
|
98 |
+
if os.path.exists(unzip_path):
|
99 |
+
shutil.rmtree(unzip_path)
|
100 |
+
im_name_l = pd.Series(im_name_l).map(lambda x: x.split("/")[-1]).values.tolist()
|
101 |
+
return json.dumps({
|
102 |
+
"names": im_name_l,
|
103 |
+
"embs": embeddings.embeddings[0]
|
104 |
+
}), im_l
|
105 |
+
|
106 |
+
|
107 |
+
def emb_img_func(im, choose_model,
|
108 |
+
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
|
109 |
+
print("call im :")
|
110 |
+
if im is None:
|
111 |
+
return json.dumps({})
|
112 |
+
im_obj = Image.fromarray(im)
|
113 |
+
im_name = "{}.png".format(uuid1())
|
114 |
+
im_obj.save(im_name)
|
115 |
+
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
|
116 |
+
embeddings = rn50_embedding_pipeline(images=[im_name])
|
117 |
+
os.remove(im_name)
|
118 |
+
return json.dumps({
|
119 |
+
"names": [im_name],
|
120 |
+
"embs": embeddings.embeddings[0]
|
121 |
+
})
|
122 |
+
|
123 |
+
def image_grid(imgs, rows, cols):
|
124 |
+
assert len(imgs) <= rows*cols
|
125 |
+
w, h = imgs[0].size
|
126 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
127 |
+
grid_w, grid_h = grid.size
|
128 |
+
|
129 |
+
for i, img in enumerate(imgs):
|
130 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
131 |
+
return grid
|
132 |
+
|
133 |
+
def expand2square(pil_img, background_color):
|
134 |
+
width, height = pil_img.size
|
135 |
+
if width == height:
|
136 |
+
return pil_img
|
137 |
+
elif width > height:
|
138 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
139 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
140 |
+
return result
|
141 |
+
else:
|
142 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
143 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
144 |
+
return result
|
145 |
+
|
146 |
+
def image_click(images, evt: gr.SelectData,
|
147 |
+
choose_model,
|
148 |
+
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict,
|
149 |
+
top_k = 5
|
150 |
+
):
|
151 |
+
|
152 |
+
images = json.loads(images.model_dump_json())
|
153 |
+
images = list(map(lambda x: {"name": x["image"]["path"]}, images))
|
154 |
+
|
155 |
+
img_selected = images[evt.index]
|
156 |
+
pivot_image_path = images[evt.index]['name']
|
157 |
+
|
158 |
+
im_name_l = list(map(lambda x: x["name"], images))
|
159 |
+
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
|
160 |
+
embeddings = rn50_embedding_pipeline(images=im_name_l)
|
161 |
+
json_text = json.dumps({
|
162 |
+
"names": im_name_l,
|
163 |
+
"embs": embeddings.embeddings[0]
|
164 |
+
})
|
165 |
+
|
166 |
+
assert type(json_text) == type("")
|
167 |
+
assert type(pivot_image_path) in [type(""), type(0)]
|
168 |
+
dd_obj = json.loads(json_text)
|
169 |
+
names = dd_obj["names"]
|
170 |
+
embs = dd_obj["embs"]
|
171 |
+
|
172 |
+
assert pivot_image_path in names
|
173 |
+
corr_df = pd.DataFrame(np.asarray(embs).T).corr()
|
174 |
+
corr_df.columns = names
|
175 |
+
corr_df.index = names
|
176 |
+
arr_l = []
|
177 |
+
for i, r in corr_df.iterrows():
|
178 |
+
arr_ll = sorted(r.to_dict().items(), key = lambda t2: t2[1], reverse = True)
|
179 |
+
arr_l.append(arr_ll)
|
180 |
+
top_k = min(len(corr_df), top_k)
|
181 |
+
cols = pd.Series(arr_l[names.index(pivot_image_path)]).map(lambda x: x[0]).values.tolist()[:top_k]
|
182 |
+
corr_array_df = pd.DataFrame(arr_l).applymap(lambda x: x[0])
|
183 |
+
corr_array_df.index = names
|
184 |
+
#### corr_array
|
185 |
+
corr_array = corr_array_df.loc[cols].iloc[:, :top_k].values
|
186 |
+
l_list = pd.Series(corr_array.reshape([-1])).values.tolist()
|
187 |
+
l_dist_list = []
|
188 |
+
for ele in l_list:
|
189 |
+
if ele not in l_dist_list:
|
190 |
+
l_dist_list.append(ele)
|
191 |
+
return l_dist_list, l_list
|
192 |
+
|
193 |
+
|
194 |
+
with gr.Blocks() as demo:
|
195 |
+
with gr.Row():
|
196 |
+
choose_model = gr.Radio(choices=["0", "1", "2", "3"],
|
197 |
+
value="0", label="Choose embedding layer", elem_id="layer_radio")
|
198 |
+
with gr.Row():
|
199 |
+
with gr.Column():
|
200 |
+
inputs_0 = gr.Image(label = "Input Image for embed")
|
201 |
+
button_0 = gr.Button("Image button")
|
202 |
+
with gr.Column():
|
203 |
+
inputs_1 = gr.File(label = "Input Images zip file for embed")
|
204 |
+
button_1 = gr.Button("Image File button")
|
205 |
+
with gr.Row():
|
206 |
+
with gr.Column():
|
207 |
+
g_outputs = gr.Gallery(label='Output gallery', elem_id="gallery",
|
208 |
+
columns=[5],object_fit="contain", height="auto")
|
209 |
+
outputs = gr.Text(label = "Output Embeddings")
|
210 |
+
with gr.Column():
|
211 |
+
sdg_outputs = gr.Gallery(label='Sort Distinct gallery', elem_id="gallery",
|
212 |
+
columns=[5],object_fit="contain", height="auto")
|
213 |
+
sg_outputs = gr.Gallery(label='Sort gallery', elem_id="gallery",
|
214 |
+
columns=[5],object_fit="contain", height="auto")
|
215 |
+
|
216 |
+
|
217 |
+
button_0.click(fn = emb_img_func, inputs = [inputs_0, choose_model], outputs = outputs)
|
218 |
+
button_1.click(fn = unzip_ims_func, inputs = [inputs_1, choose_model],
|
219 |
+
outputs = [outputs, g_outputs])
|
220 |
+
|
221 |
+
g_outputs.select(image_click,
|
222 |
+
inputs = [g_outputs, choose_model],
|
223 |
+
outputs = [sdg_outputs, sg_outputs],)
|
224 |
+
|
225 |
+
|
226 |
+
demo.launch("0.0.0.0")
|