File size: 38,588 Bytes
03c1af1
 
aeee3b1
 
 
 
 
 
 
 
 
03c1af1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
#### qa_env
#from conf import *

import os
d = dict(SYNONYMS_WORD2VEC_BIN_URL_ZH_CN = \
     "https://github.com/chatopera/Synonyms/releases/download/3.15.0/words.vector.gz")

for k, v in d.items():
    os.environ[k] = v


from qa import *
from translate_by_api import *
from extract_by_api import *
from extract_et_by_api import *

import os
import logging
import subprocess
import time
from pathlib import Path

from haystack.nodes import Text2SparqlRetriever
from haystack.document_stores import GraphDBKnowledgeGraph, InMemoryKnowledgeGraph
#from haystack.utils import fetch_archive_from_http

import pandas as pd
import numpy as np
import os
import sys

#import jieba
from functools import partial, reduce, lru_cache
#from easynmt import EasyNMT

#from sentence_transformers.util import pytorch_cos_sim
#from sentence_transformers import SentenceTransformer
from time import time

from itertools import product

#import pickle as pkl
from urllib.parse import unquote

import requests
import json

import pandas as pd
import numpy as np
import os
import sys

#import jieba
from functools import partial, reduce, lru_cache
#from easynmt import EasyNMT

#from sentence_transformers.util import pytorch_cos_sim
#from sentence_transformers import SentenceTransformer
from time import time

from itertools import product

#import pickle as pkl
#import faiss

from rapidfuzz import fuzz
import synonyms

import sys
#sys.path.insert(0 ,"/Users/svjack/temp/HP_kbqa/script")
#from trans_toolkit import *

#from easynmt import EasyNMT
#zh_en_naive_model = EasyNMT("m2m_100_418M")
'''
p00 = os.path.join(model_path, "zh_en_m2m")
assert os.path.exists(p00)
zh_en_naive_model = EasyNMT(p00)
zh_en_naive_model.translate(["宁波在哪?"], source_lang="zh", target_lang = "en")
'''

'''
from haystack.nodes import FARMReader
#question_reader_save_path = "/Users/svjack/temp/model/en_zh_question_reader_save_epc_2_spo"
question_reader_save_path = os.path.join(model_path, "en_zh_question_reader_save_epc_2_spo")
assert os.path.exists(question_reader_save_path)
en_zh_reader = FARMReader(model_name_or_path=question_reader_save_path, use_gpu=False,
    num_processes = 0
)
'''

kg = InMemoryKnowledgeGraph(index="tutorial_10_index")
kg.delete_index()
kg.create_index()

kg.import_from_ttl_file(index="tutorial_10_index", path=Path("data") / "triples.ttl")
#kg.get_params()
#all_triples = kg.get_all_triples()
#spo_df = pd.DataFrame(all_triples)

#### some collection in kb_aug
import re
def transform_namespace_to_prefix_str(g):
    namespaces = g.namespaces()
    return "\n".join(map(lambda x: "PREFIX {}: <{}>".format(x[0], x[1]), namespaces))

#print(transform_namespace_to_prefix_str(kg.indexes["tutorial_10_index"]))
### ->

wiki_prefix = '''
PREFIX brick: <https://brickschema.org/schema/Brick#>
PREFIX csvw: <http://www.w3.org/ns/csvw#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dcmitype: <http://purl.org/dc/dcmitype/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX dcam: <http://purl.org/dc/dcam/>
PREFIX doap: <http://usefulinc.com/ns/doap#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX odrl: <http://www.w3.org/ns/odrl/2/>
PREFIX org: <http://www.w3.org/ns/org#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX prof: <http://www.w3.org/ns/dx/prof/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX qb: <http://purl.org/linked-data/cube#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <https://schema.org/>
PREFIX sh: <http://www.w3.org/ns/shacl#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX sosa: <http://www.w3.org/ns/sosa/>
PREFIX ssn: <http://www.w3.org/ns/ssn/>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX vann: <http://purl.org/vocab/vann/>
PREFIX void: <http://rdfs.org/ns/void#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX xml: <http://www.w3.org/XML/1998/namespace>
PREFIX hp: <https://deepset.ai/harry_potter/>
'''

prefix_s = pd.Series(wiki_prefix.split("\n")).map(
    lambda x: x if x.startswith("PREFIX") else np.nan
).dropna().map(
    lambda x: re.findall("PREFIX (.*): <", x)
).map(lambda x: x[0])


prefix_url_dict = dict(map(
    lambda y: (y.split(" ")[1].replace(":", ""), y.split(" ")[2].strip()[1:-1])
    ,filter(
    lambda x: x.strip()
    , wiki_prefix.split("\n"))))

url_prefix_dict = dict(map(lambda t2: t2[::-1], prefix_url_dict.items()))

all_triples = kg.get_all_triples()
spo_df = pd.DataFrame(all_triples)
spo_df_simple = spo_df.copy()
spo_df_simple = spo_df_simple.applymap(lambda x: x["value"]).applymap(lambda x:
                                                  (list(filter(lambda t2: x.startswith(t2[0]), url_prefix_dict.items()))[0], x) if any(map(lambda t2: x.startswith(t2[0]), url_prefix_dict.items())) else (None, x)
                                                   ).applymap(
    lambda t2: t2[1].replace(t2[0][0], "{}:".format(t2[0][1])) if t2[0] is not None else t2[1]
).applymap(unquote)

'''
#### like property in wikidata
spo_df_simple["p"].map(
    lambda x: x[3:] if x.startswith("hp:") else np.nan
).dropna().value_counts()

#### others in p col (rdf:type)
spo_df_simple["p"].map(
    lambda x: x if not x.startswith("hp:") else np.nan
).dropna().value_counts()

#### groupby different entity type view
pd.concat(
list(map(
    lambda t2: t2[1].head(2),
list(spo_df_simple[
    spo_df_simple["p"] == "rdf:type"
].sort_values(by = ["o", "s"]).groupby("o"))
)), axis = 0).head(30)
'''

#### spo s(type)o

#### use deepl translate to lookup
#spo_trans_total_df = pd.read_csv("../data/spo_trans_total.csv")
spo_trans_total_df = pd.read_csv("data/spo_trans_total.csv")
spo_trans_dict = dict(spo_trans_total_df.values.tolist())
'''
with open("../data/spo_trans_dict.json", "w") as f:
    json.dump(spo_trans_dict, f)
'''

spo_trans_back_dict = dict(map(lambda t2: t2[::-1], spo_trans_dict.items()))
spo_df_simple_keyed = spo_df_simple.copy()

def map_to_trans_key(src):
    x = str(src)
    if not x.startswith("hp:"):
        return np.nan
    return x[3:].replace('"', '').replace("'", '').replace("_", " ")

spo_df_simple_trans = spo_df_simple_keyed.applymap(
    lambda x: (x ,map_to_trans_key(x))
).applymap(
    lambda t2: spo_trans_dict.get(t2[1], t2[0]) if type(t2[1]) == type("") else t2[0]
)

'''
pd.concat(
list(map(
    lambda t2: t2[1].head(2),
list(spo_df_simple_trans[
    spo_df_simple_trans["p"] == "rdf:type"
].sort_values(by = ["o", "s"]).groupby("o"))
)), axis = 0).head(50)

spo_df_simple_trans[
    spo_df_simple_trans["s"] == "斯蒂芬-康福特"
]
'''

model_dir = "data/"
kgqa_retriever = Text2SparqlRetriever(knowledge_graph=kg, model_name_or_path=model_dir + "hp_v3.4")

def decode_query(eng_query ,kgqa_retriever, top_k = 3):
    self = kgqa_retriever
    inputs = self.tok([eng_query], max_length=100, truncation=True, return_tensors="pt")
    # generate top_k+2 SPARQL queries so that we can dismiss some queries with wrong syntax
    temp = self.model.generate(
            inputs["input_ids"], num_beams=max(5, top_k + 2), max_length=100, num_return_sequences=top_k + 2, early_stopping=True
        )
    sparql_queries = [
            self.tok.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in temp
        ]
    return sparql_queries

import re
from uuid import uuid1
import jionlp as jio

special_match_token_list = [
        " filter(",
]

def fill_bk(str_):
    #assert str_[0] == "("
    req = []
    cnt = 0
    have_match_one = False
    for char in str_:
        #print(req)
        if char == "(":
            cnt += 1
            have_match_one = True
        if char == ")":
            cnt -= 1
        req.append(char)
        if cnt == 0 and have_match_one:
            break
    return "".join(req)

def match_special_token(query, special_match_token_list):
    assert type(query) == type("")
    assert type(special_match_token_list) == type([])
    special_match_token_list_ = list(filter(lambda x: x in query, special_match_token_list))
    if not special_match_token_list_:
        return []
    return list(map(lambda x: (x ,
    fill_bk(
    query[query.find(x):]
    )
    ), special_match_token_list_))

def retrieve_sent_split(sent,
                       stops_split_pattern = "|".join(map(lambda x: r"\{}".format(x),
                                                                 " "))
                       ):
    if not sent.strip():
        return []

    split_list = re.split(stops_split_pattern, sent)
    return split_list

import jionlp as jio

ask_l = [
        "?answer", "?value", "?obj", "?sbj", "?s", "?x",  "?a"
    ]
ask_ner = jio.ner.LexiconNER({
    "ask": ask_l
})

def query_to_t3(query, filter_list = [], ask_ner = ask_ner):
    '''
    query = query.replace("?answer", " ?answer ")
    query = query.replace("?value", " ?value ")
    query = query.replace("?obj", " ?obj ")
    query = query.replace("?sbj", " ?sbj ")
    query = query.replace("?s", " ?s ")
    query = query.replace("?x", " ?x ")
    '''
    l = ask_ner(query)
    l = sorted(set(map(lambda x: x["text"], l)), key = len, reverse = True)

    for k in l:
        query = query.replace(k, " {} ".format(k))

    '''
    if "where" not in query and "WHERE" not in query:
        return []
    '''

    special_token_list = match_special_token(query, special_match_token_list)
    #return special_token_list
    if special_token_list:
        special_token_list = list(set(map(lambda t2: t2[1] ,special_token_list)))
        uid_special_token_dict = dict(map(lambda x: (str(uuid1()), x), special_token_list))
        special_token_uid_dict = dict(map(lambda t2: t2[::-1], uid_special_token_dict.items()))
        assert len(special_token_uid_dict) == len(uid_special_token_dict)

        for k, v in sorted(special_token_uid_dict.items(), key = lambda t2: len(t2[0]), reverse = True):
            if k in query:
                #query = query.replace(k, v)
                query = query.replace(k, "")
    else:
        uid_special_token_dict = {}
        special_token_uid_dict = {}

    '''
    if "where" in query:
        tail = "where".join(query.split("where")[1:])
    elif "WHERE" in query:
        tail = "WHERE".join(query.split("WHERE")[1:])
    '''
    #return query
    query = query.strip()
    if not query.endswith("}"):
        query = query + "}"
    tail = re.findall(r"{(.*)}", query)
    #return tail
    #return t3_list
    if not tail:
        return []
    else:
        tail = tail[0]

    t3_list = list(map(lambda x: x.strip() ,tail.split(".")))
    t3_list_ = []
    for ele in t3_list:
        for k, v in uid_special_token_dict.items():
            if k in ele:
                ele = ele.replace(k, v)
        t3_list_.append(ele)
    t3_list = t3_list_

    if filter_list:
        t3_list = list(filter(lambda x:
                         any(map(lambda y: y in x ,filter_list))
                         , t3_list))
    t3_list = list(map(lambda x:
        list(filter(lambda y: y.strip() ,retrieve_sent_split(x)))
        , t3_list))
    return t3_list

def decode_property(eng_query ,kgqa_retriever, top_k = 3):
    sparql_queries = decode_query(eng_query,  kgqa_retriever, top_k = top_k)
    if not sparql_queries:
        return []
    t3_nest_list = list(map(lambda x: query_to_t3(x), sparql_queries))
    ####return t3_nest_list
    p_nest_list = []
    for ele in t3_nest_list:
        for e in ele:
            if len(e) == 3:
                p_nest_list.append(e)
    #p_nest_list = list(filter(lambda x: len(x) == 3, t3_nest_list))
    if not p_nest_list:
        return []
    p_nest_list = list(map(lambda x: x[1], p_nest_list))
    return p_nest_list

'''
#### ori query decoder
query = "Harry Potter live in which house?"
query = "when was Stephen cornfoot born?"
decode_query(query,  kgqa_retriever)

#### ori query decoder only maintain property part
query = "Harry Potter live in which house in 1920?"
query = "Harry live in where?"
query = "Harry live in where?"
query = "when was Stephen cornfoot born?"
query = "what is Stephen's loyalty?"
decode_property(query,  kgqa_retriever)

query = "who is the leader of Divination homework meeting?"
'''

def template_fullfill_reconstruct_query(entity_list = ["http://www.wikidata.org/entity/Q42780"]
                                        , property_list = ["http://www.wikidata.org/prop/direct/P131",
                    "http://www.wikidata.org/prop/direct/P150"
    ],
        generate_t3_func = lambda el, pl: pd.Series(list(product(el, pl))).map(
        lambda ep: [(ep[0], ep[1], "?a"), ("?a", ep[1], ep[0])]
    ).explode().dropna().drop_duplicates().tolist()
                                       ):
    assert type(entity_list) == type([])
    assert type(property_list) == type([])
    if not entity_list or not property_list:
        return []
    query_list = list(map(list ,generate_t3_func(entity_list, property_list)))
    if not query_list:
        return []
    req = list(map(lambda x:  "select ?a {" + " ".join(x) + "}", query_list))
    return req

'''
sparql_queries_reconstruct = template_fullfill_reconstruct_query(
    ["hp:Divination_homework_meeting"],
    ["hp:leader"]
)
sparql_queries_reconstruct
'''

def run_sparql_queries(sparql_queries, kgqa_retriever, top_k = 3):
    self = kgqa_retriever
    answers = []
    for sparql_query in sparql_queries:
        ans, query = self._query_kg(sparql_query=sparql_query)
        if len(ans) > 0:
            answers.append((ans, query))
    # if there are no answers we still want to return something
    if len(answers) == 0:
        answers.append(("", ""))
    results = answers[:top_k]
    results = [self.format_result(result) for result in results]
    return results

'''
#### one conclusion
run_sparql_queries(sparql_queries_reconstruct, kgqa_retriever)
'''

#### start kbqa_protable_service (server)
def retrieve_et(zh_question, only_e = True):
    assert type(zh_question) == type("")
    '''
    qst = zh_question
    rep = requests.post(
        url = "http://localhost:8855/extract_et",
        data = {
            "question":  qst
        }
    )
    output = json.loads(rep.content.decode())
    '''
    output = call_entity_property_extract(zh_question)
    if only_e:
        return output.get("E-TAG", [])
    return output

'''
#### start qa server
def retrieve_head(zh_question):
    req = requests.post(
    url = "http://localhost:8811/qa_downstream_process",
    data = {
        "entity": "",
        "question": zh_question,
        "context": zh_question
    }
    )
    output = json.loads(req.content.decode())
    if "head" in output:
        return output["head"]
    return ""
'''
def retrieve_head(zh_question):
    output = qa_downstream_process(
        "", zh_question, zh_question
    )
    assert type(output) == type({})
    if "head" in output:
        return output["head"]
    return ""

'''
zh_question = "谁是占卜会议的领导者?"
retrieve_et(zh_question)
'''

def property_and_type_slice(spo_df_simple_trans, p_l = [], type_l = []):
    req = spo_df_simple_trans.copy()
    if type_l:
        s_l = req[
        req["o"].isin(type_l)
    ]["s"].drop_duplicates().dropna().values.tolist()
        req = req[
            req["s"].isin(s_l)
        ]
    if req.size == 0:
        return None
    if p_l:
        s_l = req[
        req["p"].isin(p_l)
    ]["s"].drop_duplicates().dropna().values.tolist()
        req = req[
            req["s"].isin(s_l)
        ]
    if req.size == 0:
        return None
    return req

'''
### Organisation_ sanple
property_and_type_slice(
    spo_df_simple_trans, p_l = ["创立"], type_l = ["hp:Organisation_"]
).sort_values(by = "s")["s"].drop_duplicates().sample(n = 30)

### people sample
property_and_type_slice(
    spo_df_simple_trans, p_l = ["出生"], type_l = ["hp:Individual_"]
).sort_values(by = "s")["s"].drop_duplicates().sample(n = 30)

zh_question = "谁是占卜会议的领导者?"
en_question = zh_en_naive_model.translate([zh_question], source_lang="zh", target_lang = "en")[0]
en_properties = decode_property(en_question,  kgqa_retriever)
en_properties
'''

all_en_p = spo_df_simple["p"].drop_duplicates().dropna().values.tolist()
all_en_p_tokens = pd.Series(list(map(lambda x: x[3:].split("_") ,filter(lambda x:  x.startswith("hp:"), all_en_p)))).explode().dropna().map(
    lambda x: x if bool(x) else np.nan
).dropna().drop_duplicates().values.tolist()
###all_en_p_tokens[:10]

all_p_df = pd.Series(all_en_p).reset_index().iloc[:, 1:]
all_p_df.columns = ["en_p"]
all_p_df = all_p_df[
    all_p_df["en_p"] != "rdf:type"
]
all_p_df["zh_p"] = all_p_df["en_p"].map(
    lambda x: spo_trans_dict.get(x.replace("hp:", "").replace("_", " "), x.replace("hp:", "").replace("_", " "))
)
#all_p_df

#### decoder property mapping: (map decoder to kb exists)
decode_map_config_dict = {
    "hp:birth":  'hp:born',
    'hp:birthday': "hp:born"
}

#### decoder sim property mapping: (decoder that can not distinguish)
decode_sim_config_dict = {
    'hp:ingredients':  "hp:characteristics",
    "hp:characteristics": 'hp:ingredients'
}

def decode_property_link_to_ori(decode_property,  all_en_p, all_en_p_tokens, equal_threshold = 80):
    if not decode_property.startswith("hp:") or not len(decode_property) >= 3:
        return None
    if decode_property in all_en_p:
        return [(decode_property, 100.0)]
    if decode_property in decode_map_config_dict:
        return [(decode_map_config_dict[decode_property], 99.0)]
    def filter_by_p_tokens(decode_property):
        req = []
        for ele in decode_property[3:].split("_"):
            if ele in all_en_p_tokens:
                req.append(ele)
        return "hp:{}".format("_".join(req))
    if decode_property == "hp:":
        return None
    decode_property = filter_by_p_tokens(decode_property)
    order_list = sorted(map(lambda x: (x, fuzz.ratio(x, decode_property)), all_en_p), key = lambda t2: t2[1], reverse = True)
    return order_list[:10]

'''
#### minimize maintain one token sorted.
decode_property_link_to_ori("hp:born",  all_en_p, all_en_p_tokens, equal_threshold = 80)
decode_property_link_to_ori("hp:birth",  all_en_p, all_en_p_tokens, equal_threshold = 80)
decode_property_link_to_ori("hp:head_of_the_assembly",  all_en_p, all_en_p_tokens, equal_threshold = 80)
'''


def output_to_dict(output, trans_keys = ["answers"]):
    non_trans_t2_list = list(filter(lambda t2: t2[0] not in trans_keys, output.items()))
    trans_t2_list = list(map(lambda tt2: (
        tt2[0],
       list(map(lambda x: x.to_dict(), tt2[1]))
    ) ,filter(lambda t2: t2[0] in trans_keys, output.items())))
    #return trans_t2_list
    return dict(trans_t2_list + non_trans_t2_list)

def zh_question_to_p_zh_en_map(zh_question, top_k = 3):
    #zh_question = "谁是占卜会议的领导者?"
    #en_question = zh_en_naive_model.translate([zh_question], source_lang="zh", target_lang = "en")[0]
    en_question = call_zh_en_naive_model(zh_question)
    en_properties = decode_property(en_question,  kgqa_retriever, top_k = top_k)
    if not en_properties:
        return None
    en_properties_top_sort = pd.Series(en_properties).value_counts().index.tolist()
    en_properties_mapped = list(map(
    lambda x: decode_property_link_to_ori(x,  all_en_p, all_en_p_tokens, equal_threshold = 80), en_properties_top_sort
    ))
    en_properties_mapped = list(filter(lambda x: hasattr(x, "__len__") and len(x) >= 1, en_properties_mapped))
    if not en_properties_mapped:
        return None
    en_properties_mapped = list(map(lambda x: x[0] ,en_properties_mapped))
    en_properties_mapped_df = pd.DataFrame(en_properties_mapped)
    assert en_properties_mapped_df.shape[1] == 2
    en_properties_mapped_df.columns = ["en_property", "score"]
    '''
    en_properties_mapped_df["zh_property"] = en_properties_mapped_df["en_property"].map(
        lambda x: en_zh_reader.predict_on_texts(
        question=x.replace("hp:", ""),
        texts=[zh_question]
    )
    ).map(output_to_dict)
    '''
    en_properties_mapped_df["zh_property"] = en_properties_mapped_df["en_property"].map(
        lambda x: call_en_zh_reader(
        x.replace("hp:", ""),
        zh_question
        )
    )
    en_properties_mapped_df["zh_property"] = en_properties_mapped_df["zh_property"].map(lambda x: x["answers"][0] if  x["answers"] else {})
    en_properties_mapped_df = en_properties_mapped_df[
    en_properties_mapped_df["zh_property"].map(bool)
    ]
    if en_properties_mapped_df is None or en_properties_mapped_df.size == 0:
        return None
    #return nerd_df
    en_properties_mapped_df["ext_score"] = en_properties_mapped_df["zh_property"].map(
    lambda x: x["score"]
    )
    en_properties_mapped_df["zh_property"] = en_properties_mapped_df["zh_property"].map(
    lambda x: x["answer"]
    )
    '''
    en_properties_mapped_df = en_properties_mapped_df[
    en_properties_mapped_df["ext_score"].map(lambda x: x > score_threshold)
    ]
    '''
    if en_properties_mapped_df is None or en_properties_mapped_df.size == 0:
        return None
    ask_head = retrieve_head(zh_question)
    #if type(ask_head) == type("") and "什么" in ask_head:
    if type(ask_head) == type(""):
        #ask_head = ask_head.replace("什么", "")
        first_d = en_properties_mapped_df.iloc[0].to_dict()
        first_d["zh_property"] = ask_head
        en_properties_mapped_df = pd.DataFrame(
        [first_d] + en_properties_mapped_df.apply(lambda x: x.to_dict(), axis = 1).values.tolist()
        )
    else:
        pass
    en_properties_mapped_df = en_properties_mapped_df[
    en_properties_mapped_df["zh_property"].map(lambda x: bool(x))
    ].drop_duplicates()
    return en_properties_mapped_df

def search_sym_p(question_p_df,  all_p_df):
    #zh_p_l = question_p_df["zh_property"].drop_duplicates().values.tolist()
    #en_p_l = question_p_df["en_property"].drop_duplicates().values.tolist()
    req = []
    for idx, r in question_p_df.iterrows():
        all_p_score_df =  all_p_df.copy()
        all_p_score_df["zh_property"] = [r["zh_property"]] * len(all_p_score_df)
        all_p_score_df["en_property"] = [r["en_property"]] * len(all_p_score_df)
        req.append(all_p_score_df)
    req = pd.concat(req, axis = 0)
    req["zh_sim"] = req.apply(
        lambda x: synonyms.compare(x["zh_property"], x["zh_p"]), axis = 1
    )
    req = req.sort_values(by = "zh_sim", ascending = False)
    return req

all_en_ents = pd.Series(spo_df_simple[["s", "o"]].values.reshape([-1])).drop_duplicates().values.tolist()
all_ents_df = pd.Series(all_en_ents).reset_index().iloc[:, 1:]
all_ents_df.columns = ["en_ent"]
all_ents_df = all_ents_df[
    all_ents_df["en_ent"] != "rdf:type"
]
all_ents_df["zh_ent"] = all_ents_df["en_ent"].map(
    lambda x: spo_trans_dict.get(x.replace("hp:", "").replace("_", " "), x.replace("hp:", "").replace("_", " "))
)
#all_ents_df
def search_sym_entity(entity_str,  all_ents_df, use_syn = False):
    #zh_p_l = question_p_df["zh_property"].drop_duplicates().values.tolist()
    #en_p_l = question_p_df["en_property"].drop_duplicates().values.tolist()
    req = all_ents_df.copy()
    req["entity_str"] = [entity_str] * len(req)
    if use_syn:
        req["zh_sim"] = req.apply(
        lambda x: synonyms.compare(x["zh_ent"], x["entity_str"]), axis = 1
    )
    else:
        req["zh_sim"] = req.apply(
        lambda x: fuzz.ratio(x["zh_ent"], x["entity_str"]), axis = 1
        )
    req = req.sort_values(by = "zh_sim", ascending = False)
    return req

zh_question = "谁是占卜会议的领导者?"
zh_question = "洛林出生在哪个国家?"
zh_question = "洛林出生在哪个地方?"
zh_question = "洛林的血缘是什么?"
zh_question = "洛林的生日是什么?"
zh_question = "洛林的家族是什么?"
zh_question = "洛林的性别是什么?"
zh_question = "洛林的标题是什么?"
zh_question = "洛林的主题是什么?"
zh_question = "这个物品的特征是什么?"
zh_question = "强效祛斑药水的特征是什么?"
zh_question = "魔法学校的成立日期是什么?"
zh_question = "魔法学校的校长是谁?"
question_p_df = zh_question_to_p_zh_en_map(zh_question)
#question_p_df

#### top en_p as consider (high zh_sim)
#### need preload to precaculate all candidates in all_p_df
sym_p_df = search_sym_p(question_p_df,  all_p_df)
#sym_p_df

'''
#### this can be done, all related with translate accurate
entity_str = "占卜会议"
search_sym_entity(entity_str,  all_ents_df)

#### re translate in massive times
pd.Series(list(spo_trans_dict.keys())).to_csv("../data/all_consider.csv", index = False)
'''

#### ->
'''
sparql_queries_reconstruct = template_fullfill_reconstruct_query(
    ["hp:Divination_homework_meeting"],
    ["hp:leader"]
)
sparql_queries_reconstruct
'''

def from_zh_question_to_consider_queries(zh_question, top_k = 32, top_p_k = 5, top_e_k = 50, kgqa_retriever = kgqa_retriever,):
    zh_ents = retrieve_et(zh_question)
    if type(zh_ents) != type([]) or not zh_ents:
        return None
    question_p_df = zh_question_to_p_zh_en_map(zh_question, top_k = top_p_k)
    if not hasattr(question_p_df, "size") or question_p_df.size == 0:
        return None
    ### en_p
    sym_p_df = search_sym_p(question_p_df,  all_p_df)
    if not hasattr(sym_p_df, "size") or sym_p_df.size == 0:
        return None
    sim_entity_df_list = []
    for entity_str in zh_ents:
        sym_ent_df = search_sym_entity(entity_str,  all_ents_df)
        if not hasattr(sym_ent_df, "size") or sym_ent_df.size == 0:
            continue
        sim_entity_df_list.append(sym_ent_df)
    if type(sim_entity_df_list) != type([]) or not sim_entity_df_list:
        return None

    #### en_ent
    sym_ent_df = pd.concat(sim_entity_df_list, axis = 0).sort_values(by = "zh_sim", ascending = False)
    #return sym_p_df, sym_ent_df

    top_p = sym_p_df["en_p"].drop_duplicates().dropna().head(top_p_k).values.tolist()
    top_e = sym_ent_df["en_ent"].drop_duplicates().dropna().head(top_e_k).values.tolist()

    print(
        top_e
    )
    print(
        top_p
    )

    if not top_p or not top_e:
        return None

    sparql_queries_reconstruct = template_fullfill_reconstruct_query(
        top_e,
        top_p
    )
    #return sparql_queries_reconstruct
    if not sparql_queries_reconstruct:
        return None

    output = run_sparql_queries(sparql_queries_reconstruct, kgqa_retriever, top_k = top_k)
    return sparql_queries_reconstruct ,output

def trans_output(zh_question ,output):
    if type(output) != type([]):
        return output
    def single_trans(d):
        assert type(d) == type({})
        if not d:
            return d
        req = {}
        answer = d.get("answer")
        if type(answer) == type([]):
            answer = list(map(lambda x:
                         spo_trans_dict.get(x.split("/")[-1].replace("_", " "),
                                           x.split("/")[-1].replace("_", " ")
                                           ) if x.startswith("https://deepset.ai/harry_potter") else x
                         , answer))
        sparql_query = d.get("prediction_meta")
        if sparql_query is not None:
            sparql_query = sparql_query.get("sparql_query")
        if type(sparql_query) == type(""):
            t3_in_query = query_to_t3(sparql_query)
            hp_l = pd.Series(np.asarray(t3_in_query).reshape([-1])).map(lambda x: x[3:] if x.startswith("hp:") else np.nan).dropna().drop_duplicates().values.tolist()
            for ele in sorted(hp_l, key = len, reverse = True):
                sparql_query = sparql_query.replace(ele, spo_trans_dict.get(ele.split("/")[-1].replace("_", " "),
                                           ele.split("/")[-1].replace("_", " ")))
        if answer is not None:
            req["answer"] = answer
        if sparql_query is not None:
            req["sparql_query"] = sparql_query
        return req
    output_trans = list(map(single_trans, output))
    output_trans = sorted(output_trans, key = lambda d:
    synonyms.compare(zh_question, " " if  d.get("sparql_query", " ") else " ") if type(d) == type({}) else 0.0
    , reverse = True)
    return output_trans

def ranking_output(zh_question, zh_output):
    e_t_dict = retrieve_et(zh_question, only_e=False)
    e = e_t_dict.get("E-TAG", [])
    t = e_t_dict.get("T-TAG", [])
    e, t = map(" ".join, [e, t])
    print(e, t)
    df = pd.DataFrame(zh_output)
    df = df.explode("answer")
    #### e query
    df["e_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
                                                    list(filter(lambda y: "?" not in y ,
                                                                list(np.asarray(x.split())[[0, -1]])
                                                               ))
                                                                                    ).map(" ".join).map(lambda x:
                                                                                                        [e, x.split(":")[-1]]
                                                                                                       ).map(lambda x: list(map(lambda y:
                                                                                                                                y.replace(" ", "") ,x))).map(lambda x:
                                                                                                             fuzz.ratio(*x))
    df["t_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
                                                    list(filter(lambda y: "?" not in y ,
                                                                x.split()[1]
                                                               ))
                                                                                    ).map(" ".join).map(lambda x:
                                                                                                        [t, x.split(":")[-1]]
                                                                                                       ).map(lambda x: list(map(lambda y:
                                                                                                                                y.replace(" ", "") ,x))).map(lambda x:
                                                                                                             fuzz.ratio(*x))


    #df["a_score"] = df["answer"].map(lambda x: [x, t]).map(lambda x: synonyms.compare(*x)) * 100
    df["et_score"] = df[["e_score", "t_score", ]].sum(axis = 1)
    df = df.sort_values(by = "et_score", ascending = False)
    if df["et_score"].iloc[0] >= 50:
        return df
    df["e_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
                                                    list(filter(lambda y: "?" not in y ,
                                                                list(np.asarray(x.split())[[0, -1]])
                                                               ))
                                                                                    ).map(" ".join).map(lambda x:
                                                                                                        [e, x.split(":")[-1]]
                                                                                                       ).map(lambda x: list(map(lambda y:
                                                                                                                                y.replace(" ", "") ,x))).map(lambda x:
                                                                                                             synonyms.compare(*x))
    df["t_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
                                                    list(filter(lambda y: "?" not in y ,
                                                                x.split()[1]
                                                               ))
                                                                                    ).map(" ".join).map(lambda x:
                                                                                                        [t, x.split(":")[-1]]
                                                                                                       ).map(lambda x: list(map(lambda y:
                                                                                                                                y.replace(" ", "") ,x))).map(lambda x:
                                                                                                             synonyms.compare(*x))

    #df["a_score"] = df["answer"].map(lambda x: [x, t]).map(lambda x: synonyms.compare(*x))
    #df["a_score"] = df["a_score"] / 100.0
    df["et_score"] = df[["e_score", "t_score", ]].sum(axis = 1)
    df = df.sort_values(by = "et_score", ascending = False)
    return df

if __name__ == "__main__":
    #### 血缘 need fintune, tackle with ranking_output
    #### top3 to top5 recall design
    zh_question = "哈利波特的血缘是什么?"
    #output = from_zh_question_to_consider_queries(zh_question)
    output = from_zh_question_to_consider_queries(zh_question,
                                             top_k = 32, top_p_k = 30, top_e_k = 50
                                             )
    if type(output) == type((1,)):
        query_list, output = output
        zh_output = trans_output(zh_question ,output)
    else:
        zh_output = None
    zh_output
    ranking_output(zh_question, zh_output)

    zh_question = "哈利波特的生日是什么?"
    #output = from_zh_question_to_consider_queries(zh_question)
    output = from_zh_question_to_consider_queries(zh_question,
                                             top_k = 32, top_p_k = 30, top_e_k = 50
                                             )
    if type(output) == type((1,)):
        query_list, output = output
        zh_output = trans_output(zh_question ,output)
    else:
        zh_output = None
    zh_output
    ranking_output(zh_question, zh_output)

    zh_question = "史内普的生日是什么时候?"
    #output = from_zh_question_to_consider_queries(zh_question)
    output = from_zh_question_to_consider_queries(zh_question,
                                             top_k = 32, top_p_k = 30, top_e_k = 50
                                             )
    if type(output) == type((1,)):
        query_list, output = output
        zh_output = trans_output(zh_question ,output)
    else:
        zh_output = None
    zh_output
    ranking_output(zh_question, zh_output)

    zh_question = "占卜会议的领导者是谁?"
    #output = from_zh_question_to_consider_queries(zh_question)
    output = from_zh_question_to_consider_queries(zh_question,
                                             top_k = 32, top_p_k = 30, top_e_k = 50
                                             )
    if type(output) == type((1,)):
        query_list, output = output
        zh_output = trans_output(zh_question ,output)
    else:
        zh_output = None
    zh_output
    ranking_output(zh_question, zh_output)

    zh_question = "纽约卫生局的创立时间是什么?"
    #output = from_zh_question_to_consider_queries(zh_question)
    output = from_zh_question_to_consider_queries(zh_question,
                                             top_k = 32, top_p_k = 30, top_e_k = 50
                                             )
    if type(output) == type((1,)):
        query_list, output = output
        zh_output = trans_output(zh_question ,output)
    else:
        zh_output = None
    zh_output
    ranking_output(zh_question, zh_output)

    zh_question = "法兰西魔法部记录室位于哪个城市?"
    #output = from_zh_question_to_consider_queries(zh_question)
    output = from_zh_question_to_consider_queries(zh_question,
                                             top_k = 32, top_p_k = 30, top_e_k = 50
                                             )
    if type(output) == type((1,)):
        query_list, output = output
        zh_output = trans_output(zh_question ,output)
    else:
        zh_output = None
    zh_output
    ranking_output(zh_question, zh_output)

    zh_question = "邓布利多的出生日期是什么?"
    #output = from_zh_question_to_consider_queries(zh_question)
    output = from_zh_question_to_consider_queries(zh_question,
                                             top_k = 32, top_p_k = 30, top_e_k = 50
                                             )
    if type(output) == type((1,)):
        query_list, output = output
        zh_output = trans_output(zh_question ,output)
    else:
        zh_output = None
    zh_output
    ranking_output(zh_question, zh_output)

    zh_question = "哥布林叛乱发生在什么日期?"
    #output = from_zh_question_to_consider_queries(zh_question, top_p_k = 50)
    output = from_zh_question_to_consider_queries(zh_question,
                                             top_k = 32, top_p_k = 30, top_e_k = 50
                                             )
    if type(output) == type((1,)):
        query_list, output = output
        zh_output = trans_output(zh_question ,output)
    else:
        zh_output = None
    zh_output
    ranking_output(zh_question, zh_output)

    zh_question = "决斗比赛的参与者是谁?"
    #output = from_zh_question_to_consider_queries(zh_question)
    output = from_zh_question_to_consider_queries(zh_question,
                                             top_k = 32, top_p_k = 30, top_e_k = 50
                                             )
    if type(output) == type((1,)):
        query_list, output = output
        zh_output = trans_output(zh_question ,output)
    else:
        zh_output = None
    zh_output
    ranking_output(zh_question, zh_output)

    zh_question = "赫敏的丈夫是谁?"
    #output = from_zh_question_to_consider_queries(zh_question)
    output = from_zh_question_to_consider_queries(zh_question,
                                             top_k = 32, top_p_k = 30, top_e_k = 50
                                             )
    if type(output) == type((1,)):
        query_list, output = output
        zh_output = trans_output(zh_question ,output)
    else:
        zh_output = None
    zh_output
    ranking_output(zh_question, zh_output)