Upload 5 files
Browse files- extract_by_api.py +17 -0
- extract_et_by_api.py +14 -0
- qa.py +138 -0
- translate_by_api.py +14 -0
- wiki_kb_qa_migrate.py +1012 -0
extract_by_api.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
def call_en_zh_reader(English_Span, Chinese_Sentence):
|
4 |
+
assert type(English_Span) == type("")
|
5 |
+
assert type(Chinese_Sentence) == type("")
|
6 |
+
response = requests.post("https://svjack-extract-similar-chinese-span-by--5daeb83.hf.space/run/predict", json={
|
7 |
+
"data": [
|
8 |
+
English_Span,
|
9 |
+
Chinese_Sentence,
|
10 |
+
]}).json()
|
11 |
+
data = response["data"]
|
12 |
+
if data:
|
13 |
+
data = data[0]
|
14 |
+
pass
|
15 |
+
else:
|
16 |
+
pass
|
17 |
+
return data
|
extract_et_by_api.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
def call_entity_property_extract(zh_question):
|
4 |
+
response = requests.post("https://svjack-entity-property-extractor-zh.hf.space/run/predict", json={
|
5 |
+
"data": [
|
6 |
+
zh_question,
|
7 |
+
]}).json()
|
8 |
+
data = response["data"]
|
9 |
+
if data:
|
10 |
+
data = data[0]
|
11 |
+
pass
|
12 |
+
else:
|
13 |
+
pass
|
14 |
+
return data
|
qa.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#from conf import *
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import re
|
5 |
+
from rapidfuzz import fuzz
|
6 |
+
import requests
|
7 |
+
import json
|
8 |
+
|
9 |
+
#assert os.path.exists(flair_ner_model_path)
|
10 |
+
#loaded_model: SequenceTagger = SequenceTagger.load(os.path.join(flair_ner_model_path ,"best-model.pt"))
|
11 |
+
|
12 |
+
'''
|
13 |
+
def one_item_process(r, loaded_model):
|
14 |
+
#assert type(r) == type(pd.Series())
|
15 |
+
zh = r["question"]
|
16 |
+
zh = zh.replace(" ", "").strip()
|
17 |
+
sentence = Sentence(" ".join(list(zh)))
|
18 |
+
loaded_model.predict(sentence)
|
19 |
+
sentence_str = str(sentence)
|
20 |
+
ask_spans = re.findall(r'\["(.+?)"/ASK\]', sentence_str)
|
21 |
+
sentence = re.findall(r'Sentence: "(.+?)"', sentence_str)
|
22 |
+
if ask_spans:
|
23 |
+
ask_spans = ask_spans[0]
|
24 |
+
else:
|
25 |
+
ask_spans = ""
|
26 |
+
if sentence:
|
27 |
+
sentence = sentence[0]
|
28 |
+
else:
|
29 |
+
sentence = ""
|
30 |
+
ask_spans, sentence = map(lambda x: x.replace(" ", "").strip(), [ask_spans, sentence])
|
31 |
+
return ask_spans, sentence
|
32 |
+
'''
|
33 |
+
|
34 |
+
def one_item_process_by_request(r):
|
35 |
+
zh = r["question"]
|
36 |
+
zh = zh.replace(" ", "").strip()
|
37 |
+
response = requests.post("https://svjack-question-words-extractor-zh.hf.space/run/predict", json={
|
38 |
+
"data": [
|
39 |
+
zh,
|
40 |
+
]}).json()
|
41 |
+
data = response["data"]
|
42 |
+
#data = json.loads(data)
|
43 |
+
if data:
|
44 |
+
data = data[0]
|
45 |
+
Question_words = data["Question words"]
|
46 |
+
else:
|
47 |
+
Question_words = ""
|
48 |
+
return Question_words, zh
|
49 |
+
|
50 |
+
|
51 |
+
def retrieve_sent_split(sent,
|
52 |
+
stops_split_pattern = "|".join(map(lambda x: r"\{}".format(x),
|
53 |
+
",." + ",。" + ":?? "))
|
54 |
+
):
|
55 |
+
if not sent.strip():
|
56 |
+
return []
|
57 |
+
|
58 |
+
split_list = re.split(stops_split_pattern, sent)
|
59 |
+
return split_list
|
60 |
+
|
61 |
+
def find_min_text_contain_entity_span(sent, entity_str, statement):
|
62 |
+
#assert entity_str in sent
|
63 |
+
span_list = list(filter(lambda x: entity_str in x ,retrieve_sent_split(sent)))
|
64 |
+
if not span_list:
|
65 |
+
return sent
|
66 |
+
span_list = list(map(lambda x: (x, fuzz.ratio(x, statement)), span_list))
|
67 |
+
return sorted(span_list, key = lambda t2: t2[1], reverse = True)[0][0]
|
68 |
+
#return sorted(span_list, key = len)[0]
|
69 |
+
|
70 |
+
def to_statement(r):
|
71 |
+
entity = r["entity"]
|
72 |
+
question = r["question"]
|
73 |
+
head = r["head"]
|
74 |
+
context = r["context"]
|
75 |
+
statement = question.replace(head, entity).replace("?", "").replace("?", "")
|
76 |
+
top_chip = find_min_text_contain_entity_span(context, entity, statement)
|
77 |
+
return statement, top_chip
|
78 |
+
|
79 |
+
'''
|
80 |
+
r = {'entity': '1901年',
|
81 |
+
'question': '荷兰国会何时通过伦理政策?',
|
82 |
+
'title': '爪哇岛',
|
83 |
+
'context': '伊斯兰教被接受的同时,其教义也被融入了当地人长久以来的一些信仰,所以爪哇岛的伊斯兰教带有明显的本地特色 “荷兰东印度公司”在巴达维亚(今天的雅加达)建立了“贸易和行政管理总部” 在殖民统治时期,荷兰人将注意力集中在雅加达和其他一些海滨城市,例如三宝垄和泗水 荷兰殖民者还通过一些归顺的本土势力,间接对这个多山的岛屿进行统治,例如爪哇岛中部的马打兰王国 19世纪,荷兰政府从荷兰东印度公司手上接管了东印度群岛,1830年荷兰统治者开始实行所谓“耕种制”(荷兰语cultuurstelsel en cultuurprocenten)的变相奴役制度,导致了大范围的饥荒和贫困 随即发生了各种政治和社会反抗运动,其中一位名叫Multatuli的荷兰作家写了一本名叫《Max Havelaar》的小说,以抗议当时的社会状况 迫于各种反抗运动此起彼伏,1901年荷兰国会通过伦理政策(Etnisch beleid),客观上使一部分爪哇人接触到荷兰式教育,在这些人中,出现了很多杰出的印尼民族主义者,并且在二战后的印尼独立运动中起到了重要作用'}
|
84 |
+
|
85 |
+
qa_downstream_process(
|
86 |
+
r["entity"],
|
87 |
+
r["question"],
|
88 |
+
r["context"],
|
89 |
+
loaded_model
|
90 |
+
)
|
91 |
+
|
92 |
+
{'entity': '1901年',
|
93 |
+
'question': '荷兰国会何时通过伦理政策?',
|
94 |
+
'context': '伊斯兰教被接受的同时,其教义也被融入了当地人长久以来的一些信仰,所以爪哇岛的伊斯兰教带有明显的本地特色 “荷兰东印度公司”在巴达维亚(今天的雅加达)建立了“贸易和行政管理总部” 在殖民统治时期,荷兰人将注意力集中在雅加达和其他一些海滨城市,例如三宝垄和泗水 荷兰殖民者还通过一些归顺的本土势力,间接对这个多山的岛屿进行统治,例如爪哇岛中部的马打兰王国 19世纪,荷兰政府从荷兰东印度公司手上接管了东印度群岛,1830年荷兰统治者开始实行所谓“耕种制”(荷兰语cultuurstelsel en cultuurprocenten)的变相奴役制度,导致了大范围的饥荒和贫困 随即发生了各种政治和社会反抗运动,其中一位名叫Multatuli的荷兰作家写了一本名叫《Max Havelaar》的小说,以抗议当时的社会状况 迫于各种反抗运动此起彼伏,1901年荷兰国会通过伦理政策(Etnisch beleid),客观上使一部分爪哇人接触到荷兰式教育,在这些人中,出现了很多杰出的印尼民族主义者,并且在二战后的印尼独立运动中起到了重要作用',
|
95 |
+
'head': '何时',
|
96 |
+
'statement': '荷兰国会1901年通过伦理政策',
|
97 |
+
'top_chip': '1901年荷兰国会通过伦理政策(Etnisch'}
|
98 |
+
'''
|
99 |
+
#def qa_downstream_process(entity, question, context, loaded_model = loaded_model):
|
100 |
+
def qa_downstream_process(entity, question, context):
|
101 |
+
if entity not in context:
|
102 |
+
return None
|
103 |
+
d = {
|
104 |
+
"entity": entity,
|
105 |
+
"question": question,
|
106 |
+
"context": context
|
107 |
+
}
|
108 |
+
#head_qst = one_item_process(d, loaded_model)
|
109 |
+
head_qst = one_item_process_by_request(d)
|
110 |
+
head, _ = head_qst
|
111 |
+
d["head"] = head
|
112 |
+
statement, top_chip = to_statement(d)
|
113 |
+
d["statement"] = statement
|
114 |
+
d["top_chip"] = top_chip
|
115 |
+
return d
|
116 |
+
|
117 |
+
'''
|
118 |
+
@csrf_exempt
|
119 |
+
def qa_downstream_process_part(request):
|
120 |
+
assert request.method == "POST"
|
121 |
+
post_data = request.POST
|
122 |
+
entity = post_data["entity"]
|
123 |
+
question = post_data["question"]
|
124 |
+
context = post_data["context"]
|
125 |
+
output = qa_downstream_process(entity, question, context)
|
126 |
+
if output is None:
|
127 |
+
return HttpResponse(json.dumps(
|
128 |
+
{"output": "No Answer"}
|
129 |
+
))
|
130 |
+
assert type(output) == type({})
|
131 |
+
req_str = json.dumps(output)
|
132 |
+
return HttpResponse(
|
133 |
+
req_str
|
134 |
+
)
|
135 |
+
'''
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
pass
|
translate_by_api.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
def call_zh_en_naive_model(zh_question):
|
4 |
+
response = requests.post("https://svjack-translate-chinese-to-english.hf.space/run/predict", json={
|
5 |
+
"data": [
|
6 |
+
zh_question,
|
7 |
+
]}).json()
|
8 |
+
data = response["data"]
|
9 |
+
if data:
|
10 |
+
data = data[0]
|
11 |
+
English_Question = data["English Question"]
|
12 |
+
else:
|
13 |
+
English_Question = ""
|
14 |
+
return English_Question
|
wiki_kb_qa_migrate.py
ADDED
@@ -0,0 +1,1012 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#### qa_env
|
2 |
+
#from conf import *
|
3 |
+
from qa import *
|
4 |
+
from translate_by_api import *
|
5 |
+
from extract_by_api import *
|
6 |
+
from extract_et_by_api import *
|
7 |
+
|
8 |
+
import os
|
9 |
+
import logging
|
10 |
+
import subprocess
|
11 |
+
import time
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
from haystack.nodes import Text2SparqlRetriever
|
15 |
+
from haystack.document_stores import GraphDBKnowledgeGraph, InMemoryKnowledgeGraph
|
16 |
+
#from haystack.utils import fetch_archive_from_http
|
17 |
+
|
18 |
+
import pandas as pd
|
19 |
+
import numpy as np
|
20 |
+
import os
|
21 |
+
import sys
|
22 |
+
|
23 |
+
#import jieba
|
24 |
+
from functools import partial, reduce, lru_cache
|
25 |
+
#from easynmt import EasyNMT
|
26 |
+
|
27 |
+
#from sentence_transformers.util import pytorch_cos_sim
|
28 |
+
#from sentence_transformers import SentenceTransformer
|
29 |
+
from time import time
|
30 |
+
|
31 |
+
from itertools import product
|
32 |
+
|
33 |
+
#import pickle as pkl
|
34 |
+
from urllib.parse import unquote
|
35 |
+
|
36 |
+
import requests
|
37 |
+
import json
|
38 |
+
|
39 |
+
import pandas as pd
|
40 |
+
import numpy as np
|
41 |
+
import os
|
42 |
+
import sys
|
43 |
+
|
44 |
+
#import jieba
|
45 |
+
from functools import partial, reduce, lru_cache
|
46 |
+
#from easynmt import EasyNMT
|
47 |
+
|
48 |
+
#from sentence_transformers.util import pytorch_cos_sim
|
49 |
+
#from sentence_transformers import SentenceTransformer
|
50 |
+
from time import time
|
51 |
+
|
52 |
+
from itertools import product
|
53 |
+
|
54 |
+
#import pickle as pkl
|
55 |
+
#import faiss
|
56 |
+
|
57 |
+
from rapidfuzz import fuzz
|
58 |
+
import synonyms
|
59 |
+
|
60 |
+
import sys
|
61 |
+
#sys.path.insert(0 ,"/Users/svjack/temp/HP_kbqa/script")
|
62 |
+
#from trans_toolkit import *
|
63 |
+
|
64 |
+
#from easynmt import EasyNMT
|
65 |
+
#zh_en_naive_model = EasyNMT("m2m_100_418M")
|
66 |
+
'''
|
67 |
+
p00 = os.path.join(model_path, "zh_en_m2m")
|
68 |
+
assert os.path.exists(p00)
|
69 |
+
zh_en_naive_model = EasyNMT(p00)
|
70 |
+
zh_en_naive_model.translate(["宁波在哪?"], source_lang="zh", target_lang = "en")
|
71 |
+
'''
|
72 |
+
|
73 |
+
'''
|
74 |
+
from haystack.nodes import FARMReader
|
75 |
+
#question_reader_save_path = "/Users/svjack/temp/model/en_zh_question_reader_save_epc_2_spo"
|
76 |
+
question_reader_save_path = os.path.join(model_path, "en_zh_question_reader_save_epc_2_spo")
|
77 |
+
assert os.path.exists(question_reader_save_path)
|
78 |
+
en_zh_reader = FARMReader(model_name_or_path=question_reader_save_path, use_gpu=False,
|
79 |
+
num_processes = 0
|
80 |
+
)
|
81 |
+
'''
|
82 |
+
|
83 |
+
kg = InMemoryKnowledgeGraph(index="tutorial_10_index")
|
84 |
+
kg.delete_index()
|
85 |
+
kg.create_index()
|
86 |
+
|
87 |
+
kg.import_from_ttl_file(index="tutorial_10_index", path=Path("data") / "triples.ttl")
|
88 |
+
#kg.get_params()
|
89 |
+
#all_triples = kg.get_all_triples()
|
90 |
+
#spo_df = pd.DataFrame(all_triples)
|
91 |
+
|
92 |
+
#### some collection in kb_aug
|
93 |
+
import re
|
94 |
+
def transform_namespace_to_prefix_str(g):
|
95 |
+
namespaces = g.namespaces()
|
96 |
+
return "\n".join(map(lambda x: "PREFIX {}: <{}>".format(x[0], x[1]), namespaces))
|
97 |
+
|
98 |
+
#print(transform_namespace_to_prefix_str(kg.indexes["tutorial_10_index"]))
|
99 |
+
### ->
|
100 |
+
|
101 |
+
wiki_prefix = '''
|
102 |
+
PREFIX brick: <https://brickschema.org/schema/Brick#>
|
103 |
+
PREFIX csvw: <http://www.w3.org/ns/csvw#>
|
104 |
+
PREFIX dc: <http://purl.org/dc/elements/1.1/>
|
105 |
+
PREFIX dcat: <http://www.w3.org/ns/dcat#>
|
106 |
+
PREFIX dcmitype: <http://purl.org/dc/dcmitype/>
|
107 |
+
PREFIX dcterms: <http://purl.org/dc/terms/>
|
108 |
+
PREFIX dcam: <http://purl.org/dc/dcam/>
|
109 |
+
PREFIX doap: <http://usefulinc.com/ns/doap#>
|
110 |
+
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
|
111 |
+
PREFIX odrl: <http://www.w3.org/ns/odrl/2/>
|
112 |
+
PREFIX org: <http://www.w3.org/ns/org#>
|
113 |
+
PREFIX owl: <http://www.w3.org/2002/07/owl#>
|
114 |
+
PREFIX prof: <http://www.w3.org/ns/dx/prof/>
|
115 |
+
PREFIX prov: <http://www.w3.org/ns/prov#>
|
116 |
+
PREFIX qb: <http://purl.org/linked-data/cube#>
|
117 |
+
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
|
118 |
+
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
|
119 |
+
PREFIX schema: <https://schema.org/>
|
120 |
+
PREFIX sh: <http://www.w3.org/ns/shacl#>
|
121 |
+
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
|
122 |
+
PREFIX sosa: <http://www.w3.org/ns/sosa/>
|
123 |
+
PREFIX ssn: <http://www.w3.org/ns/ssn/>
|
124 |
+
PREFIX time: <http://www.w3.org/2006/time#>
|
125 |
+
PREFIX vann: <http://purl.org/vocab/vann/>
|
126 |
+
PREFIX void: <http://rdfs.org/ns/void#>
|
127 |
+
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
|
128 |
+
PREFIX xml: <http://www.w3.org/XML/1998/namespace>
|
129 |
+
PREFIX hp: <https://deepset.ai/harry_potter/>
|
130 |
+
'''
|
131 |
+
|
132 |
+
prefix_s = pd.Series(wiki_prefix.split("\n")).map(
|
133 |
+
lambda x: x if x.startswith("PREFIX") else np.nan
|
134 |
+
).dropna().map(
|
135 |
+
lambda x: re.findall("PREFIX (.*): <", x)
|
136 |
+
).map(lambda x: x[0])
|
137 |
+
|
138 |
+
|
139 |
+
prefix_url_dict = dict(map(
|
140 |
+
lambda y: (y.split(" ")[1].replace(":", ""), y.split(" ")[2].strip()[1:-1])
|
141 |
+
,filter(
|
142 |
+
lambda x: x.strip()
|
143 |
+
, wiki_prefix.split("\n"))))
|
144 |
+
|
145 |
+
url_prefix_dict = dict(map(lambda t2: t2[::-1], prefix_url_dict.items()))
|
146 |
+
|
147 |
+
all_triples = kg.get_all_triples()
|
148 |
+
spo_df = pd.DataFrame(all_triples)
|
149 |
+
spo_df_simple = spo_df.copy()
|
150 |
+
spo_df_simple = spo_df_simple.applymap(lambda x: x["value"]).applymap(lambda x:
|
151 |
+
(list(filter(lambda t2: x.startswith(t2[0]), url_prefix_dict.items()))[0], x) if any(map(lambda t2: x.startswith(t2[0]), url_prefix_dict.items())) else (None, x)
|
152 |
+
).applymap(
|
153 |
+
lambda t2: t2[1].replace(t2[0][0], "{}:".format(t2[0][1])) if t2[0] is not None else t2[1]
|
154 |
+
).applymap(unquote)
|
155 |
+
|
156 |
+
'''
|
157 |
+
#### like property in wikidata
|
158 |
+
spo_df_simple["p"].map(
|
159 |
+
lambda x: x[3:] if x.startswith("hp:") else np.nan
|
160 |
+
).dropna().value_counts()
|
161 |
+
|
162 |
+
#### others in p col (rdf:type)
|
163 |
+
spo_df_simple["p"].map(
|
164 |
+
lambda x: x if not x.startswith("hp:") else np.nan
|
165 |
+
).dropna().value_counts()
|
166 |
+
|
167 |
+
#### groupby different entity type view
|
168 |
+
pd.concat(
|
169 |
+
list(map(
|
170 |
+
lambda t2: t2[1].head(2),
|
171 |
+
list(spo_df_simple[
|
172 |
+
spo_df_simple["p"] == "rdf:type"
|
173 |
+
].sort_values(by = ["o", "s"]).groupby("o"))
|
174 |
+
)), axis = 0).head(30)
|
175 |
+
'''
|
176 |
+
|
177 |
+
#### spo s(type)o
|
178 |
+
|
179 |
+
#### use deepl translate to lookup
|
180 |
+
#spo_trans_total_df = pd.read_csv("../data/spo_trans_total.csv")
|
181 |
+
spo_trans_total_df = pd.read_csv("data/spo_trans_total.csv")
|
182 |
+
spo_trans_dict = dict(spo_trans_total_df.values.tolist())
|
183 |
+
'''
|
184 |
+
with open("../data/spo_trans_dict.json", "w") as f:
|
185 |
+
json.dump(spo_trans_dict, f)
|
186 |
+
'''
|
187 |
+
|
188 |
+
spo_trans_back_dict = dict(map(lambda t2: t2[::-1], spo_trans_dict.items()))
|
189 |
+
spo_df_simple_keyed = spo_df_simple.copy()
|
190 |
+
|
191 |
+
def map_to_trans_key(src):
|
192 |
+
x = str(src)
|
193 |
+
if not x.startswith("hp:"):
|
194 |
+
return np.nan
|
195 |
+
return x[3:].replace('"', '').replace("'", '').replace("_", " ")
|
196 |
+
|
197 |
+
spo_df_simple_trans = spo_df_simple_keyed.applymap(
|
198 |
+
lambda x: (x ,map_to_trans_key(x))
|
199 |
+
).applymap(
|
200 |
+
lambda t2: spo_trans_dict.get(t2[1], t2[0]) if type(t2[1]) == type("") else t2[0]
|
201 |
+
)
|
202 |
+
|
203 |
+
'''
|
204 |
+
pd.concat(
|
205 |
+
list(map(
|
206 |
+
lambda t2: t2[1].head(2),
|
207 |
+
list(spo_df_simple_trans[
|
208 |
+
spo_df_simple_trans["p"] == "rdf:type"
|
209 |
+
].sort_values(by = ["o", "s"]).groupby("o"))
|
210 |
+
)), axis = 0).head(50)
|
211 |
+
|
212 |
+
spo_df_simple_trans[
|
213 |
+
spo_df_simple_trans["s"] == "斯蒂芬-康福特"
|
214 |
+
]
|
215 |
+
'''
|
216 |
+
|
217 |
+
model_dir = "data/"
|
218 |
+
kgqa_retriever = Text2SparqlRetriever(knowledge_graph=kg, model_name_or_path=model_dir + "hp_v3.4")
|
219 |
+
|
220 |
+
def decode_query(eng_query ,kgqa_retriever, top_k = 3):
|
221 |
+
self = kgqa_retriever
|
222 |
+
inputs = self.tok([eng_query], max_length=100, truncation=True, return_tensors="pt")
|
223 |
+
# generate top_k+2 SPARQL queries so that we can dismiss some queries with wrong syntax
|
224 |
+
temp = self.model.generate(
|
225 |
+
inputs["input_ids"], num_beams=max(5, top_k + 2), max_length=100, num_return_sequences=top_k + 2, early_stopping=True
|
226 |
+
)
|
227 |
+
sparql_queries = [
|
228 |
+
self.tok.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in temp
|
229 |
+
]
|
230 |
+
return sparql_queries
|
231 |
+
|
232 |
+
import re
|
233 |
+
from uuid import uuid1
|
234 |
+
import jionlp as jio
|
235 |
+
|
236 |
+
special_match_token_list = [
|
237 |
+
" filter(",
|
238 |
+
]
|
239 |
+
|
240 |
+
def fill_bk(str_):
|
241 |
+
#assert str_[0] == "("
|
242 |
+
req = []
|
243 |
+
cnt = 0
|
244 |
+
have_match_one = False
|
245 |
+
for char in str_:
|
246 |
+
#print(req)
|
247 |
+
if char == "(":
|
248 |
+
cnt += 1
|
249 |
+
have_match_one = True
|
250 |
+
if char == ")":
|
251 |
+
cnt -= 1
|
252 |
+
req.append(char)
|
253 |
+
if cnt == 0 and have_match_one:
|
254 |
+
break
|
255 |
+
return "".join(req)
|
256 |
+
|
257 |
+
def match_special_token(query, special_match_token_list):
|
258 |
+
assert type(query) == type("")
|
259 |
+
assert type(special_match_token_list) == type([])
|
260 |
+
special_match_token_list_ = list(filter(lambda x: x in query, special_match_token_list))
|
261 |
+
if not special_match_token_list_:
|
262 |
+
return []
|
263 |
+
return list(map(lambda x: (x ,
|
264 |
+
fill_bk(
|
265 |
+
query[query.find(x):]
|
266 |
+
)
|
267 |
+
), special_match_token_list_))
|
268 |
+
|
269 |
+
def retrieve_sent_split(sent,
|
270 |
+
stops_split_pattern = "|".join(map(lambda x: r"\{}".format(x),
|
271 |
+
" "))
|
272 |
+
):
|
273 |
+
if not sent.strip():
|
274 |
+
return []
|
275 |
+
|
276 |
+
split_list = re.split(stops_split_pattern, sent)
|
277 |
+
return split_list
|
278 |
+
|
279 |
+
import jionlp as jio
|
280 |
+
|
281 |
+
ask_l = [
|
282 |
+
"?answer", "?value", "?obj", "?sbj", "?s", "?x", "?a"
|
283 |
+
]
|
284 |
+
ask_ner = jio.ner.LexiconNER({
|
285 |
+
"ask": ask_l
|
286 |
+
})
|
287 |
+
|
288 |
+
def query_to_t3(query, filter_list = [], ask_ner = ask_ner):
|
289 |
+
'''
|
290 |
+
query = query.replace("?answer", " ?answer ")
|
291 |
+
query = query.replace("?value", " ?value ")
|
292 |
+
query = query.replace("?obj", " ?obj ")
|
293 |
+
query = query.replace("?sbj", " ?sbj ")
|
294 |
+
query = query.replace("?s", " ?s ")
|
295 |
+
query = query.replace("?x", " ?x ")
|
296 |
+
'''
|
297 |
+
l = ask_ner(query)
|
298 |
+
l = sorted(set(map(lambda x: x["text"], l)), key = len, reverse = True)
|
299 |
+
|
300 |
+
for k in l:
|
301 |
+
query = query.replace(k, " {} ".format(k))
|
302 |
+
|
303 |
+
'''
|
304 |
+
if "where" not in query and "WHERE" not in query:
|
305 |
+
return []
|
306 |
+
'''
|
307 |
+
|
308 |
+
special_token_list = match_special_token(query, special_match_token_list)
|
309 |
+
#return special_token_list
|
310 |
+
if special_token_list:
|
311 |
+
special_token_list = list(set(map(lambda t2: t2[1] ,special_token_list)))
|
312 |
+
uid_special_token_dict = dict(map(lambda x: (str(uuid1()), x), special_token_list))
|
313 |
+
special_token_uid_dict = dict(map(lambda t2: t2[::-1], uid_special_token_dict.items()))
|
314 |
+
assert len(special_token_uid_dict) == len(uid_special_token_dict)
|
315 |
+
|
316 |
+
for k, v in sorted(special_token_uid_dict.items(), key = lambda t2: len(t2[0]), reverse = True):
|
317 |
+
if k in query:
|
318 |
+
#query = query.replace(k, v)
|
319 |
+
query = query.replace(k, "")
|
320 |
+
else:
|
321 |
+
uid_special_token_dict = {}
|
322 |
+
special_token_uid_dict = {}
|
323 |
+
|
324 |
+
'''
|
325 |
+
if "where" in query:
|
326 |
+
tail = "where".join(query.split("where")[1:])
|
327 |
+
elif "WHERE" in query:
|
328 |
+
tail = "WHERE".join(query.split("WHERE")[1:])
|
329 |
+
'''
|
330 |
+
#return query
|
331 |
+
query = query.strip()
|
332 |
+
if not query.endswith("}"):
|
333 |
+
query = query + "}"
|
334 |
+
tail = re.findall(r"{(.*)}", query)
|
335 |
+
#return tail
|
336 |
+
#return t3_list
|
337 |
+
if not tail:
|
338 |
+
return []
|
339 |
+
else:
|
340 |
+
tail = tail[0]
|
341 |
+
|
342 |
+
t3_list = list(map(lambda x: x.strip() ,tail.split(".")))
|
343 |
+
t3_list_ = []
|
344 |
+
for ele in t3_list:
|
345 |
+
for k, v in uid_special_token_dict.items():
|
346 |
+
if k in ele:
|
347 |
+
ele = ele.replace(k, v)
|
348 |
+
t3_list_.append(ele)
|
349 |
+
t3_list = t3_list_
|
350 |
+
|
351 |
+
if filter_list:
|
352 |
+
t3_list = list(filter(lambda x:
|
353 |
+
any(map(lambda y: y in x ,filter_list))
|
354 |
+
, t3_list))
|
355 |
+
t3_list = list(map(lambda x:
|
356 |
+
list(filter(lambda y: y.strip() ,retrieve_sent_split(x)))
|
357 |
+
, t3_list))
|
358 |
+
return t3_list
|
359 |
+
|
360 |
+
def decode_property(eng_query ,kgqa_retriever, top_k = 3):
|
361 |
+
sparql_queries = decode_query(eng_query, kgqa_retriever, top_k = top_k)
|
362 |
+
if not sparql_queries:
|
363 |
+
return []
|
364 |
+
t3_nest_list = list(map(lambda x: query_to_t3(x), sparql_queries))
|
365 |
+
####return t3_nest_list
|
366 |
+
p_nest_list = []
|
367 |
+
for ele in t3_nest_list:
|
368 |
+
for e in ele:
|
369 |
+
if len(e) == 3:
|
370 |
+
p_nest_list.append(e)
|
371 |
+
#p_nest_list = list(filter(lambda x: len(x) == 3, t3_nest_list))
|
372 |
+
if not p_nest_list:
|
373 |
+
return []
|
374 |
+
p_nest_list = list(map(lambda x: x[1], p_nest_list))
|
375 |
+
return p_nest_list
|
376 |
+
|
377 |
+
'''
|
378 |
+
#### ori query decoder
|
379 |
+
query = "Harry Potter live in which house?"
|
380 |
+
query = "when was Stephen cornfoot born?"
|
381 |
+
decode_query(query, kgqa_retriever)
|
382 |
+
|
383 |
+
#### ori query decoder only maintain property part
|
384 |
+
query = "Harry Potter live in which house in 1920?"
|
385 |
+
query = "Harry live in where?"
|
386 |
+
query = "Harry live in where?"
|
387 |
+
query = "when was Stephen cornfoot born?"
|
388 |
+
query = "what is Stephen's loyalty?"
|
389 |
+
decode_property(query, kgqa_retriever)
|
390 |
+
|
391 |
+
query = "who is the leader of Divination homework meeting?"
|
392 |
+
'''
|
393 |
+
|
394 |
+
def template_fullfill_reconstruct_query(entity_list = ["http://www.wikidata.org/entity/Q42780"]
|
395 |
+
, property_list = ["http://www.wikidata.org/prop/direct/P131",
|
396 |
+
"http://www.wikidata.org/prop/direct/P150"
|
397 |
+
],
|
398 |
+
generate_t3_func = lambda el, pl: pd.Series(list(product(el, pl))).map(
|
399 |
+
lambda ep: [(ep[0], ep[1], "?a"), ("?a", ep[1], ep[0])]
|
400 |
+
).explode().dropna().drop_duplicates().tolist()
|
401 |
+
):
|
402 |
+
assert type(entity_list) == type([])
|
403 |
+
assert type(property_list) == type([])
|
404 |
+
if not entity_list or not property_list:
|
405 |
+
return []
|
406 |
+
query_list = list(map(list ,generate_t3_func(entity_list, property_list)))
|
407 |
+
if not query_list:
|
408 |
+
return []
|
409 |
+
req = list(map(lambda x: "select ?a {" + " ".join(x) + "}", query_list))
|
410 |
+
return req
|
411 |
+
|
412 |
+
'''
|
413 |
+
sparql_queries_reconstruct = template_fullfill_reconstruct_query(
|
414 |
+
["hp:Divination_homework_meeting"],
|
415 |
+
["hp:leader"]
|
416 |
+
)
|
417 |
+
sparql_queries_reconstruct
|
418 |
+
'''
|
419 |
+
|
420 |
+
def run_sparql_queries(sparql_queries, kgqa_retriever, top_k = 3):
|
421 |
+
self = kgqa_retriever
|
422 |
+
answers = []
|
423 |
+
for sparql_query in sparql_queries:
|
424 |
+
ans, query = self._query_kg(sparql_query=sparql_query)
|
425 |
+
if len(ans) > 0:
|
426 |
+
answers.append((ans, query))
|
427 |
+
# if there are no answers we still want to return something
|
428 |
+
if len(answers) == 0:
|
429 |
+
answers.append(("", ""))
|
430 |
+
results = answers[:top_k]
|
431 |
+
results = [self.format_result(result) for result in results]
|
432 |
+
return results
|
433 |
+
|
434 |
+
'''
|
435 |
+
#### one conclusion
|
436 |
+
run_sparql_queries(sparql_queries_reconstruct, kgqa_retriever)
|
437 |
+
'''
|
438 |
+
|
439 |
+
#### start kbqa_protable_service (server)
|
440 |
+
def retrieve_et(zh_question, only_e = True):
|
441 |
+
assert type(zh_question) == type("")
|
442 |
+
'''
|
443 |
+
qst = zh_question
|
444 |
+
rep = requests.post(
|
445 |
+
url = "http://localhost:8855/extract_et",
|
446 |
+
data = {
|
447 |
+
"question": qst
|
448 |
+
}
|
449 |
+
)
|
450 |
+
output = json.loads(rep.content.decode())
|
451 |
+
'''
|
452 |
+
output = call_entity_property_extract(zh_question)
|
453 |
+
if only_e:
|
454 |
+
return output.get("E-TAG", [])
|
455 |
+
return output
|
456 |
+
|
457 |
+
'''
|
458 |
+
#### start qa server
|
459 |
+
def retrieve_head(zh_question):
|
460 |
+
req = requests.post(
|
461 |
+
url = "http://localhost:8811/qa_downstream_process",
|
462 |
+
data = {
|
463 |
+
"entity": "",
|
464 |
+
"question": zh_question,
|
465 |
+
"context": zh_question
|
466 |
+
}
|
467 |
+
)
|
468 |
+
output = json.loads(req.content.decode())
|
469 |
+
if "head" in output:
|
470 |
+
return output["head"]
|
471 |
+
return ""
|
472 |
+
'''
|
473 |
+
def retrieve_head(zh_question):
|
474 |
+
output = qa_downstream_process(
|
475 |
+
"", zh_question, zh_question
|
476 |
+
)
|
477 |
+
assert type(output) == type({})
|
478 |
+
if "head" in output:
|
479 |
+
return output["head"]
|
480 |
+
return ""
|
481 |
+
|
482 |
+
'''
|
483 |
+
zh_question = "谁是占卜会议的领导者?"
|
484 |
+
retrieve_et(zh_question)
|
485 |
+
'''
|
486 |
+
|
487 |
+
def property_and_type_slice(spo_df_simple_trans, p_l = [], type_l = []):
|
488 |
+
req = spo_df_simple_trans.copy()
|
489 |
+
if type_l:
|
490 |
+
s_l = req[
|
491 |
+
req["o"].isin(type_l)
|
492 |
+
]["s"].drop_duplicates().dropna().values.tolist()
|
493 |
+
req = req[
|
494 |
+
req["s"].isin(s_l)
|
495 |
+
]
|
496 |
+
if req.size == 0:
|
497 |
+
return None
|
498 |
+
if p_l:
|
499 |
+
s_l = req[
|
500 |
+
req["p"].isin(p_l)
|
501 |
+
]["s"].drop_duplicates().dropna().values.tolist()
|
502 |
+
req = req[
|
503 |
+
req["s"].isin(s_l)
|
504 |
+
]
|
505 |
+
if req.size == 0:
|
506 |
+
return None
|
507 |
+
return req
|
508 |
+
|
509 |
+
'''
|
510 |
+
### Organisation_ sanple
|
511 |
+
property_and_type_slice(
|
512 |
+
spo_df_simple_trans, p_l = ["创立"], type_l = ["hp:Organisation_"]
|
513 |
+
).sort_values(by = "s")["s"].drop_duplicates().sample(n = 30)
|
514 |
+
|
515 |
+
### people sample
|
516 |
+
property_and_type_slice(
|
517 |
+
spo_df_simple_trans, p_l = ["出生"], type_l = ["hp:Individual_"]
|
518 |
+
).sort_values(by = "s")["s"].drop_duplicates().sample(n = 30)
|
519 |
+
|
520 |
+
zh_question = "谁是占卜会议的领导者?"
|
521 |
+
en_question = zh_en_naive_model.translate([zh_question], source_lang="zh", target_lang = "en")[0]
|
522 |
+
en_properties = decode_property(en_question, kgqa_retriever)
|
523 |
+
en_properties
|
524 |
+
'''
|
525 |
+
|
526 |
+
all_en_p = spo_df_simple["p"].drop_duplicates().dropna().values.tolist()
|
527 |
+
all_en_p_tokens = pd.Series(list(map(lambda x: x[3:].split("_") ,filter(lambda x: x.startswith("hp:"), all_en_p)))).explode().dropna().map(
|
528 |
+
lambda x: x if bool(x) else np.nan
|
529 |
+
).dropna().drop_duplicates().values.tolist()
|
530 |
+
###all_en_p_tokens[:10]
|
531 |
+
|
532 |
+
all_p_df = pd.Series(all_en_p).reset_index().iloc[:, 1:]
|
533 |
+
all_p_df.columns = ["en_p"]
|
534 |
+
all_p_df = all_p_df[
|
535 |
+
all_p_df["en_p"] != "rdf:type"
|
536 |
+
]
|
537 |
+
all_p_df["zh_p"] = all_p_df["en_p"].map(
|
538 |
+
lambda x: spo_trans_dict.get(x.replace("hp:", "").replace("_", " "), x.replace("hp:", "").replace("_", " "))
|
539 |
+
)
|
540 |
+
#all_p_df
|
541 |
+
|
542 |
+
#### decoder property mapping: (map decoder to kb exists)
|
543 |
+
decode_map_config_dict = {
|
544 |
+
"hp:birth": 'hp:born',
|
545 |
+
'hp:birthday': "hp:born"
|
546 |
+
}
|
547 |
+
|
548 |
+
#### decoder sim property mapping: (decoder that can not distinguish)
|
549 |
+
decode_sim_config_dict = {
|
550 |
+
'hp:ingredients': "hp:characteristics",
|
551 |
+
"hp:characteristics": 'hp:ingredients'
|
552 |
+
}
|
553 |
+
|
554 |
+
def decode_property_link_to_ori(decode_property, all_en_p, all_en_p_tokens, equal_threshold = 80):
|
555 |
+
if not decode_property.startswith("hp:") or not len(decode_property) >= 3:
|
556 |
+
return None
|
557 |
+
if decode_property in all_en_p:
|
558 |
+
return [(decode_property, 100.0)]
|
559 |
+
if decode_property in decode_map_config_dict:
|
560 |
+
return [(decode_map_config_dict[decode_property], 99.0)]
|
561 |
+
def filter_by_p_tokens(decode_property):
|
562 |
+
req = []
|
563 |
+
for ele in decode_property[3:].split("_"):
|
564 |
+
if ele in all_en_p_tokens:
|
565 |
+
req.append(ele)
|
566 |
+
return "hp:{}".format("_".join(req))
|
567 |
+
if decode_property == "hp:":
|
568 |
+
return None
|
569 |
+
decode_property = filter_by_p_tokens(decode_property)
|
570 |
+
order_list = sorted(map(lambda x: (x, fuzz.ratio(x, decode_property)), all_en_p), key = lambda t2: t2[1], reverse = True)
|
571 |
+
return order_list[:10]
|
572 |
+
|
573 |
+
'''
|
574 |
+
#### minimize maintain one token sorted.
|
575 |
+
decode_property_link_to_ori("hp:born", all_en_p, all_en_p_tokens, equal_threshold = 80)
|
576 |
+
decode_property_link_to_ori("hp:birth", all_en_p, all_en_p_tokens, equal_threshold = 80)
|
577 |
+
decode_property_link_to_ori("hp:head_of_the_assembly", all_en_p, all_en_p_tokens, equal_threshold = 80)
|
578 |
+
'''
|
579 |
+
|
580 |
+
|
581 |
+
def output_to_dict(output, trans_keys = ["answers"]):
|
582 |
+
non_trans_t2_list = list(filter(lambda t2: t2[0] not in trans_keys, output.items()))
|
583 |
+
trans_t2_list = list(map(lambda tt2: (
|
584 |
+
tt2[0],
|
585 |
+
list(map(lambda x: x.to_dict(), tt2[1]))
|
586 |
+
) ,filter(lambda t2: t2[0] in trans_keys, output.items())))
|
587 |
+
#return trans_t2_list
|
588 |
+
return dict(trans_t2_list + non_trans_t2_list)
|
589 |
+
|
590 |
+
def zh_question_to_p_zh_en_map(zh_question, top_k = 3):
|
591 |
+
#zh_question = "谁是占卜会议的领导者?"
|
592 |
+
#en_question = zh_en_naive_model.translate([zh_question], source_lang="zh", target_lang = "en")[0]
|
593 |
+
en_question = call_zh_en_naive_model(zh_question)
|
594 |
+
en_properties = decode_property(en_question, kgqa_retriever, top_k = top_k)
|
595 |
+
if not en_properties:
|
596 |
+
return None
|
597 |
+
en_properties_top_sort = pd.Series(en_properties).value_counts().index.tolist()
|
598 |
+
en_properties_mapped = list(map(
|
599 |
+
lambda x: decode_property_link_to_ori(x, all_en_p, all_en_p_tokens, equal_threshold = 80), en_properties_top_sort
|
600 |
+
))
|
601 |
+
en_properties_mapped = list(filter(lambda x: hasattr(x, "__len__") and len(x) >= 1, en_properties_mapped))
|
602 |
+
if not en_properties_mapped:
|
603 |
+
return None
|
604 |
+
en_properties_mapped = list(map(lambda x: x[0] ,en_properties_mapped))
|
605 |
+
en_properties_mapped_df = pd.DataFrame(en_properties_mapped)
|
606 |
+
assert en_properties_mapped_df.shape[1] == 2
|
607 |
+
en_properties_mapped_df.columns = ["en_property", "score"]
|
608 |
+
'''
|
609 |
+
en_properties_mapped_df["zh_property"] = en_properties_mapped_df["en_property"].map(
|
610 |
+
lambda x: en_zh_reader.predict_on_texts(
|
611 |
+
question=x.replace("hp:", ""),
|
612 |
+
texts=[zh_question]
|
613 |
+
)
|
614 |
+
).map(output_to_dict)
|
615 |
+
'''
|
616 |
+
en_properties_mapped_df["zh_property"] = en_properties_mapped_df["en_property"].map(
|
617 |
+
lambda x: call_en_zh_reader(
|
618 |
+
x.replace("hp:", ""),
|
619 |
+
zh_question
|
620 |
+
)
|
621 |
+
)
|
622 |
+
en_properties_mapped_df["zh_property"] = en_properties_mapped_df["zh_property"].map(lambda x: x["answers"][0] if x["answers"] else {})
|
623 |
+
en_properties_mapped_df = en_properties_mapped_df[
|
624 |
+
en_properties_mapped_df["zh_property"].map(bool)
|
625 |
+
]
|
626 |
+
if en_properties_mapped_df is None or en_properties_mapped_df.size == 0:
|
627 |
+
return None
|
628 |
+
#return nerd_df
|
629 |
+
en_properties_mapped_df["ext_score"] = en_properties_mapped_df["zh_property"].map(
|
630 |
+
lambda x: x["score"]
|
631 |
+
)
|
632 |
+
en_properties_mapped_df["zh_property"] = en_properties_mapped_df["zh_property"].map(
|
633 |
+
lambda x: x["answer"]
|
634 |
+
)
|
635 |
+
'''
|
636 |
+
en_properties_mapped_df = en_properties_mapped_df[
|
637 |
+
en_properties_mapped_df["ext_score"].map(lambda x: x > score_threshold)
|
638 |
+
]
|
639 |
+
'''
|
640 |
+
if en_properties_mapped_df is None or en_properties_mapped_df.size == 0:
|
641 |
+
return None
|
642 |
+
ask_head = retrieve_head(zh_question)
|
643 |
+
#if type(ask_head) == type("") and "什么" in ask_head:
|
644 |
+
if type(ask_head) == type(""):
|
645 |
+
#ask_head = ask_head.replace("什么", "")
|
646 |
+
first_d = en_properties_mapped_df.iloc[0].to_dict()
|
647 |
+
first_d["zh_property"] = ask_head
|
648 |
+
en_properties_mapped_df = pd.DataFrame(
|
649 |
+
[first_d] + en_properties_mapped_df.apply(lambda x: x.to_dict(), axis = 1).values.tolist()
|
650 |
+
)
|
651 |
+
else:
|
652 |
+
pass
|
653 |
+
en_properties_mapped_df = en_properties_mapped_df[
|
654 |
+
en_properties_mapped_df["zh_property"].map(lambda x: bool(x))
|
655 |
+
].drop_duplicates()
|
656 |
+
return en_properties_mapped_df
|
657 |
+
|
658 |
+
def search_sym_p(question_p_df, all_p_df):
|
659 |
+
#zh_p_l = question_p_df["zh_property"].drop_duplicates().values.tolist()
|
660 |
+
#en_p_l = question_p_df["en_property"].drop_duplicates().values.tolist()
|
661 |
+
req = []
|
662 |
+
for idx, r in question_p_df.iterrows():
|
663 |
+
all_p_score_df = all_p_df.copy()
|
664 |
+
all_p_score_df["zh_property"] = [r["zh_property"]] * len(all_p_score_df)
|
665 |
+
all_p_score_df["en_property"] = [r["en_property"]] * len(all_p_score_df)
|
666 |
+
req.append(all_p_score_df)
|
667 |
+
req = pd.concat(req, axis = 0)
|
668 |
+
req["zh_sim"] = req.apply(
|
669 |
+
lambda x: synonyms.compare(x["zh_property"], x["zh_p"]), axis = 1
|
670 |
+
)
|
671 |
+
req = req.sort_values(by = "zh_sim", ascending = False)
|
672 |
+
return req
|
673 |
+
|
674 |
+
all_en_ents = pd.Series(spo_df_simple[["s", "o"]].values.reshape([-1])).drop_duplicates().values.tolist()
|
675 |
+
all_ents_df = pd.Series(all_en_ents).reset_index().iloc[:, 1:]
|
676 |
+
all_ents_df.columns = ["en_ent"]
|
677 |
+
all_ents_df = all_ents_df[
|
678 |
+
all_ents_df["en_ent"] != "rdf:type"
|
679 |
+
]
|
680 |
+
all_ents_df["zh_ent"] = all_ents_df["en_ent"].map(
|
681 |
+
lambda x: spo_trans_dict.get(x.replace("hp:", "").replace("_", " "), x.replace("hp:", "").replace("_", " "))
|
682 |
+
)
|
683 |
+
#all_ents_df
|
684 |
+
def search_sym_entity(entity_str, all_ents_df, use_syn = False):
|
685 |
+
#zh_p_l = question_p_df["zh_property"].drop_duplicates().values.tolist()
|
686 |
+
#en_p_l = question_p_df["en_property"].drop_duplicates().values.tolist()
|
687 |
+
req = all_ents_df.copy()
|
688 |
+
req["entity_str"] = [entity_str] * len(req)
|
689 |
+
if use_syn:
|
690 |
+
req["zh_sim"] = req.apply(
|
691 |
+
lambda x: synonyms.compare(x["zh_ent"], x["entity_str"]), axis = 1
|
692 |
+
)
|
693 |
+
else:
|
694 |
+
req["zh_sim"] = req.apply(
|
695 |
+
lambda x: fuzz.ratio(x["zh_ent"], x["entity_str"]), axis = 1
|
696 |
+
)
|
697 |
+
req = req.sort_values(by = "zh_sim", ascending = False)
|
698 |
+
return req
|
699 |
+
|
700 |
+
zh_question = "谁是占卜会议的领导者?"
|
701 |
+
zh_question = "洛林出生在哪个国家?"
|
702 |
+
zh_question = "洛林出生在哪个地方?"
|
703 |
+
zh_question = "洛林的血缘是什么?"
|
704 |
+
zh_question = "洛林的生日是什么?"
|
705 |
+
zh_question = "洛林的家族是什么?"
|
706 |
+
zh_question = "洛林的性别是什么?"
|
707 |
+
zh_question = "洛林的标题是什么?"
|
708 |
+
zh_question = "洛林的主题是什么?"
|
709 |
+
zh_question = "这个物品的特征是什么?"
|
710 |
+
zh_question = "强效祛斑药水的特征是什么?"
|
711 |
+
zh_question = "魔法学校的成立日期是什么?"
|
712 |
+
zh_question = "魔法学校的校长是谁?"
|
713 |
+
question_p_df = zh_question_to_p_zh_en_map(zh_question)
|
714 |
+
#question_p_df
|
715 |
+
|
716 |
+
#### top en_p as consider (high zh_sim)
|
717 |
+
#### need preload to precaculate all candidates in all_p_df
|
718 |
+
sym_p_df = search_sym_p(question_p_df, all_p_df)
|
719 |
+
#sym_p_df
|
720 |
+
|
721 |
+
'''
|
722 |
+
#### this can be done, all related with translate accurate
|
723 |
+
entity_str = "占卜会议"
|
724 |
+
search_sym_entity(entity_str, all_ents_df)
|
725 |
+
|
726 |
+
#### re translate in massive times
|
727 |
+
pd.Series(list(spo_trans_dict.keys())).to_csv("../data/all_consider.csv", index = False)
|
728 |
+
'''
|
729 |
+
|
730 |
+
#### ->
|
731 |
+
'''
|
732 |
+
sparql_queries_reconstruct = template_fullfill_reconstruct_query(
|
733 |
+
["hp:Divination_homework_meeting"],
|
734 |
+
["hp:leader"]
|
735 |
+
)
|
736 |
+
sparql_queries_reconstruct
|
737 |
+
'''
|
738 |
+
|
739 |
+
def from_zh_question_to_consider_queries(zh_question, top_k = 32, top_p_k = 5, top_e_k = 50, kgqa_retriever = kgqa_retriever,):
|
740 |
+
zh_ents = retrieve_et(zh_question)
|
741 |
+
if type(zh_ents) != type([]) or not zh_ents:
|
742 |
+
return None
|
743 |
+
question_p_df = zh_question_to_p_zh_en_map(zh_question, top_k = top_p_k)
|
744 |
+
if not hasattr(question_p_df, "size") or question_p_df.size == 0:
|
745 |
+
return None
|
746 |
+
### en_p
|
747 |
+
sym_p_df = search_sym_p(question_p_df, all_p_df)
|
748 |
+
if not hasattr(sym_p_df, "size") or sym_p_df.size == 0:
|
749 |
+
return None
|
750 |
+
sim_entity_df_list = []
|
751 |
+
for entity_str in zh_ents:
|
752 |
+
sym_ent_df = search_sym_entity(entity_str, all_ents_df)
|
753 |
+
if not hasattr(sym_ent_df, "size") or sym_ent_df.size == 0:
|
754 |
+
continue
|
755 |
+
sim_entity_df_list.append(sym_ent_df)
|
756 |
+
if type(sim_entity_df_list) != type([]) or not sim_entity_df_list:
|
757 |
+
return None
|
758 |
+
|
759 |
+
#### en_ent
|
760 |
+
sym_ent_df = pd.concat(sim_entity_df_list, axis = 0).sort_values(by = "zh_sim", ascending = False)
|
761 |
+
#return sym_p_df, sym_ent_df
|
762 |
+
|
763 |
+
top_p = sym_p_df["en_p"].drop_duplicates().dropna().head(top_p_k).values.tolist()
|
764 |
+
top_e = sym_ent_df["en_ent"].drop_duplicates().dropna().head(top_e_k).values.tolist()
|
765 |
+
|
766 |
+
print(
|
767 |
+
top_e
|
768 |
+
)
|
769 |
+
print(
|
770 |
+
top_p
|
771 |
+
)
|
772 |
+
|
773 |
+
if not top_p or not top_e:
|
774 |
+
return None
|
775 |
+
|
776 |
+
sparql_queries_reconstruct = template_fullfill_reconstruct_query(
|
777 |
+
top_e,
|
778 |
+
top_p
|
779 |
+
)
|
780 |
+
#return sparql_queries_reconstruct
|
781 |
+
if not sparql_queries_reconstruct:
|
782 |
+
return None
|
783 |
+
|
784 |
+
output = run_sparql_queries(sparql_queries_reconstruct, kgqa_retriever, top_k = top_k)
|
785 |
+
return sparql_queries_reconstruct ,output
|
786 |
+
|
787 |
+
def trans_output(zh_question ,output):
|
788 |
+
if type(output) != type([]):
|
789 |
+
return output
|
790 |
+
def single_trans(d):
|
791 |
+
assert type(d) == type({})
|
792 |
+
if not d:
|
793 |
+
return d
|
794 |
+
req = {}
|
795 |
+
answer = d.get("answer")
|
796 |
+
if type(answer) == type([]):
|
797 |
+
answer = list(map(lambda x:
|
798 |
+
spo_trans_dict.get(x.split("/")[-1].replace("_", " "),
|
799 |
+
x.split("/")[-1].replace("_", " ")
|
800 |
+
) if x.startswith("https://deepset.ai/harry_potter") else x
|
801 |
+
, answer))
|
802 |
+
sparql_query = d.get("prediction_meta")
|
803 |
+
if sparql_query is not None:
|
804 |
+
sparql_query = sparql_query.get("sparql_query")
|
805 |
+
if type(sparql_query) == type(""):
|
806 |
+
t3_in_query = query_to_t3(sparql_query)
|
807 |
+
hp_l = pd.Series(np.asarray(t3_in_query).reshape([-1])).map(lambda x: x[3:] if x.startswith("hp:") else np.nan).dropna().drop_duplicates().values.tolist()
|
808 |
+
for ele in sorted(hp_l, key = len, reverse = True):
|
809 |
+
sparql_query = sparql_query.replace(ele, spo_trans_dict.get(ele.split("/")[-1].replace("_", " "),
|
810 |
+
ele.split("/")[-1].replace("_", " ")))
|
811 |
+
if answer is not None:
|
812 |
+
req["answer"] = answer
|
813 |
+
if sparql_query is not None:
|
814 |
+
req["sparql_query"] = sparql_query
|
815 |
+
return req
|
816 |
+
output_trans = list(map(single_trans, output))
|
817 |
+
output_trans = sorted(output_trans, key = lambda d:
|
818 |
+
synonyms.compare(zh_question, " " if d.get("sparql_query", " ") else " ") if type(d) == type({}) else 0.0
|
819 |
+
, reverse = True)
|
820 |
+
return output_trans
|
821 |
+
|
822 |
+
def ranking_output(zh_question, zh_output):
|
823 |
+
e_t_dict = retrieve_et(zh_question, only_e=False)
|
824 |
+
e = e_t_dict.get("E-TAG", [])
|
825 |
+
t = e_t_dict.get("T-TAG", [])
|
826 |
+
e, t = map(" ".join, [e, t])
|
827 |
+
print(e, t)
|
828 |
+
df = pd.DataFrame(zh_output)
|
829 |
+
df = df.explode("answer")
|
830 |
+
#### e query
|
831 |
+
df["e_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
|
832 |
+
list(filter(lambda y: "?" not in y ,
|
833 |
+
list(np.asarray(x.split())[[0, -1]])
|
834 |
+
))
|
835 |
+
).map(" ".join).map(lambda x:
|
836 |
+
[e, x.split(":")[-1]]
|
837 |
+
).map(lambda x: list(map(lambda y:
|
838 |
+
y.replace(" ", "") ,x))).map(lambda x:
|
839 |
+
fuzz.ratio(*x))
|
840 |
+
df["t_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
|
841 |
+
list(filter(lambda y: "?" not in y ,
|
842 |
+
x.split()[1]
|
843 |
+
))
|
844 |
+
).map(" ".join).map(lambda x:
|
845 |
+
[t, x.split(":")[-1]]
|
846 |
+
).map(lambda x: list(map(lambda y:
|
847 |
+
y.replace(" ", "") ,x))).map(lambda x:
|
848 |
+
fuzz.ratio(*x))
|
849 |
+
|
850 |
+
|
851 |
+
#df["a_score"] = df["answer"].map(lambda x: [x, t]).map(lambda x: synonyms.compare(*x)) * 100
|
852 |
+
df["et_score"] = df[["e_score", "t_score", ]].sum(axis = 1)
|
853 |
+
df = df.sort_values(by = "et_score", ascending = False)
|
854 |
+
if df["et_score"].iloc[0] >= 50:
|
855 |
+
return df
|
856 |
+
df["e_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
|
857 |
+
list(filter(lambda y: "?" not in y ,
|
858 |
+
list(np.asarray(x.split())[[0, -1]])
|
859 |
+
))
|
860 |
+
).map(" ".join).map(lambda x:
|
861 |
+
[e, x.split(":")[-1]]
|
862 |
+
).map(lambda x: list(map(lambda y:
|
863 |
+
y.replace(" ", "") ,x))).map(lambda x:
|
864 |
+
synonyms.compare(*x))
|
865 |
+
df["t_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
|
866 |
+
list(filter(lambda y: "?" not in y ,
|
867 |
+
x.split()[1]
|
868 |
+
))
|
869 |
+
).map(" ".join).map(lambda x:
|
870 |
+
[t, x.split(":")[-1]]
|
871 |
+
).map(lambda x: list(map(lambda y:
|
872 |
+
y.replace(" ", "") ,x))).map(lambda x:
|
873 |
+
synonyms.compare(*x))
|
874 |
+
|
875 |
+
#df["a_score"] = df["answer"].map(lambda x: [x, t]).map(lambda x: synonyms.compare(*x))
|
876 |
+
#df["a_score"] = df["a_score"] / 100.0
|
877 |
+
df["et_score"] = df[["e_score", "t_score", ]].sum(axis = 1)
|
878 |
+
df = df.sort_values(by = "et_score", ascending = False)
|
879 |
+
return df
|
880 |
+
|
881 |
+
if __name__ == "__main__":
|
882 |
+
#### 血缘 need fintune, tackle with ranking_output
|
883 |
+
#### top3 to top5 recall design
|
884 |
+
zh_question = "哈利波特的血缘是什么?"
|
885 |
+
#output = from_zh_question_to_consider_queries(zh_question)
|
886 |
+
output = from_zh_question_to_consider_queries(zh_question,
|
887 |
+
top_k = 32, top_p_k = 30, top_e_k = 50
|
888 |
+
)
|
889 |
+
if type(output) == type((1,)):
|
890 |
+
query_list, output = output
|
891 |
+
zh_output = trans_output(zh_question ,output)
|
892 |
+
else:
|
893 |
+
zh_output = None
|
894 |
+
zh_output
|
895 |
+
ranking_output(zh_question, zh_output)
|
896 |
+
|
897 |
+
zh_question = "哈利波特的生日是什么?"
|
898 |
+
#output = from_zh_question_to_consider_queries(zh_question)
|
899 |
+
output = from_zh_question_to_consider_queries(zh_question,
|
900 |
+
top_k = 32, top_p_k = 30, top_e_k = 50
|
901 |
+
)
|
902 |
+
if type(output) == type((1,)):
|
903 |
+
query_list, output = output
|
904 |
+
zh_output = trans_output(zh_question ,output)
|
905 |
+
else:
|
906 |
+
zh_output = None
|
907 |
+
zh_output
|
908 |
+
ranking_output(zh_question, zh_output)
|
909 |
+
|
910 |
+
zh_question = "史内普的生日是什么时候?"
|
911 |
+
#output = from_zh_question_to_consider_queries(zh_question)
|
912 |
+
output = from_zh_question_to_consider_queries(zh_question,
|
913 |
+
top_k = 32, top_p_k = 30, top_e_k = 50
|
914 |
+
)
|
915 |
+
if type(output) == type((1,)):
|
916 |
+
query_list, output = output
|
917 |
+
zh_output = trans_output(zh_question ,output)
|
918 |
+
else:
|
919 |
+
zh_output = None
|
920 |
+
zh_output
|
921 |
+
ranking_output(zh_question, zh_output)
|
922 |
+
|
923 |
+
zh_question = "占卜会议的领导者是谁?"
|
924 |
+
#output = from_zh_question_to_consider_queries(zh_question)
|
925 |
+
output = from_zh_question_to_consider_queries(zh_question,
|
926 |
+
top_k = 32, top_p_k = 30, top_e_k = 50
|
927 |
+
)
|
928 |
+
if type(output) == type((1,)):
|
929 |
+
query_list, output = output
|
930 |
+
zh_output = trans_output(zh_question ,output)
|
931 |
+
else:
|
932 |
+
zh_output = None
|
933 |
+
zh_output
|
934 |
+
ranking_output(zh_question, zh_output)
|
935 |
+
|
936 |
+
zh_question = "纽约卫生局的创立时间是什么?"
|
937 |
+
#output = from_zh_question_to_consider_queries(zh_question)
|
938 |
+
output = from_zh_question_to_consider_queries(zh_question,
|
939 |
+
top_k = 32, top_p_k = 30, top_e_k = 50
|
940 |
+
)
|
941 |
+
if type(output) == type((1,)):
|
942 |
+
query_list, output = output
|
943 |
+
zh_output = trans_output(zh_question ,output)
|
944 |
+
else:
|
945 |
+
zh_output = None
|
946 |
+
zh_output
|
947 |
+
ranking_output(zh_question, zh_output)
|
948 |
+
|
949 |
+
zh_question = "法兰西魔法部记录室位于哪个城市?"
|
950 |
+
#output = from_zh_question_to_consider_queries(zh_question)
|
951 |
+
output = from_zh_question_to_consider_queries(zh_question,
|
952 |
+
top_k = 32, top_p_k = 30, top_e_k = 50
|
953 |
+
)
|
954 |
+
if type(output) == type((1,)):
|
955 |
+
query_list, output = output
|
956 |
+
zh_output = trans_output(zh_question ,output)
|
957 |
+
else:
|
958 |
+
zh_output = None
|
959 |
+
zh_output
|
960 |
+
ranking_output(zh_question, zh_output)
|
961 |
+
|
962 |
+
zh_question = "邓布利多的出生日期是什么?"
|
963 |
+
#output = from_zh_question_to_consider_queries(zh_question)
|
964 |
+
output = from_zh_question_to_consider_queries(zh_question,
|
965 |
+
top_k = 32, top_p_k = 30, top_e_k = 50
|
966 |
+
)
|
967 |
+
if type(output) == type((1,)):
|
968 |
+
query_list, output = output
|
969 |
+
zh_output = trans_output(zh_question ,output)
|
970 |
+
else:
|
971 |
+
zh_output = None
|
972 |
+
zh_output
|
973 |
+
ranking_output(zh_question, zh_output)
|
974 |
+
|
975 |
+
zh_question = "哥布林叛乱发生在什么日期?"
|
976 |
+
#output = from_zh_question_to_consider_queries(zh_question, top_p_k = 50)
|
977 |
+
output = from_zh_question_to_consider_queries(zh_question,
|
978 |
+
top_k = 32, top_p_k = 30, top_e_k = 50
|
979 |
+
)
|
980 |
+
if type(output) == type((1,)):
|
981 |
+
query_list, output = output
|
982 |
+
zh_output = trans_output(zh_question ,output)
|
983 |
+
else:
|
984 |
+
zh_output = None
|
985 |
+
zh_output
|
986 |
+
ranking_output(zh_question, zh_output)
|
987 |
+
|
988 |
+
zh_question = "决斗比赛的参与者是谁?"
|
989 |
+
#output = from_zh_question_to_consider_queries(zh_question)
|
990 |
+
output = from_zh_question_to_consider_queries(zh_question,
|
991 |
+
top_k = 32, top_p_k = 30, top_e_k = 50
|
992 |
+
)
|
993 |
+
if type(output) == type((1,)):
|
994 |
+
query_list, output = output
|
995 |
+
zh_output = trans_output(zh_question ,output)
|
996 |
+
else:
|
997 |
+
zh_output = None
|
998 |
+
zh_output
|
999 |
+
ranking_output(zh_question, zh_output)
|
1000 |
+
|
1001 |
+
zh_question = "赫敏的丈夫是谁?"
|
1002 |
+
#output = from_zh_question_to_consider_queries(zh_question)
|
1003 |
+
output = from_zh_question_to_consider_queries(zh_question,
|
1004 |
+
top_k = 32, top_p_k = 30, top_e_k = 50
|
1005 |
+
)
|
1006 |
+
if type(output) == type((1,)):
|
1007 |
+
query_list, output = output
|
1008 |
+
zh_output = trans_output(zh_question ,output)
|
1009 |
+
else:
|
1010 |
+
zh_output = None
|
1011 |
+
zh_output
|
1012 |
+
ranking_output(zh_question, zh_output)
|