File size: 38,397 Bytes
03c1af1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 |
#### qa_env
#from conf import *
from qa import *
from translate_by_api import *
from extract_by_api import *
from extract_et_by_api import *
import os
import logging
import subprocess
import time
from pathlib import Path
from haystack.nodes import Text2SparqlRetriever
from haystack.document_stores import GraphDBKnowledgeGraph, InMemoryKnowledgeGraph
#from haystack.utils import fetch_archive_from_http
import pandas as pd
import numpy as np
import os
import sys
#import jieba
from functools import partial, reduce, lru_cache
#from easynmt import EasyNMT
#from sentence_transformers.util import pytorch_cos_sim
#from sentence_transformers import SentenceTransformer
from time import time
from itertools import product
#import pickle as pkl
from urllib.parse import unquote
import requests
import json
import pandas as pd
import numpy as np
import os
import sys
#import jieba
from functools import partial, reduce, lru_cache
#from easynmt import EasyNMT
#from sentence_transformers.util import pytorch_cos_sim
#from sentence_transformers import SentenceTransformer
from time import time
from itertools import product
#import pickle as pkl
#import faiss
from rapidfuzz import fuzz
import synonyms
import sys
#sys.path.insert(0 ,"/Users/svjack/temp/HP_kbqa/script")
#from trans_toolkit import *
#from easynmt import EasyNMT
#zh_en_naive_model = EasyNMT("m2m_100_418M")
'''
p00 = os.path.join(model_path, "zh_en_m2m")
assert os.path.exists(p00)
zh_en_naive_model = EasyNMT(p00)
zh_en_naive_model.translate(["宁波在哪?"], source_lang="zh", target_lang = "en")
'''
'''
from haystack.nodes import FARMReader
#question_reader_save_path = "/Users/svjack/temp/model/en_zh_question_reader_save_epc_2_spo"
question_reader_save_path = os.path.join(model_path, "en_zh_question_reader_save_epc_2_spo")
assert os.path.exists(question_reader_save_path)
en_zh_reader = FARMReader(model_name_or_path=question_reader_save_path, use_gpu=False,
num_processes = 0
)
'''
kg = InMemoryKnowledgeGraph(index="tutorial_10_index")
kg.delete_index()
kg.create_index()
kg.import_from_ttl_file(index="tutorial_10_index", path=Path("data") / "triples.ttl")
#kg.get_params()
#all_triples = kg.get_all_triples()
#spo_df = pd.DataFrame(all_triples)
#### some collection in kb_aug
import re
def transform_namespace_to_prefix_str(g):
namespaces = g.namespaces()
return "\n".join(map(lambda x: "PREFIX {}: <{}>".format(x[0], x[1]), namespaces))
#print(transform_namespace_to_prefix_str(kg.indexes["tutorial_10_index"]))
### ->
wiki_prefix = '''
PREFIX brick: <https://brickschema.org/schema/Brick#>
PREFIX csvw: <http://www.w3.org/ns/csvw#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dcmitype: <http://purl.org/dc/dcmitype/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX dcam: <http://purl.org/dc/dcam/>
PREFIX doap: <http://usefulinc.com/ns/doap#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX odrl: <http://www.w3.org/ns/odrl/2/>
PREFIX org: <http://www.w3.org/ns/org#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX prof: <http://www.w3.org/ns/dx/prof/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX qb: <http://purl.org/linked-data/cube#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <https://schema.org/>
PREFIX sh: <http://www.w3.org/ns/shacl#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX sosa: <http://www.w3.org/ns/sosa/>
PREFIX ssn: <http://www.w3.org/ns/ssn/>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX vann: <http://purl.org/vocab/vann/>
PREFIX void: <http://rdfs.org/ns/void#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX xml: <http://www.w3.org/XML/1998/namespace>
PREFIX hp: <https://deepset.ai/harry_potter/>
'''
prefix_s = pd.Series(wiki_prefix.split("\n")).map(
lambda x: x if x.startswith("PREFIX") else np.nan
).dropna().map(
lambda x: re.findall("PREFIX (.*): <", x)
).map(lambda x: x[0])
prefix_url_dict = dict(map(
lambda y: (y.split(" ")[1].replace(":", ""), y.split(" ")[2].strip()[1:-1])
,filter(
lambda x: x.strip()
, wiki_prefix.split("\n"))))
url_prefix_dict = dict(map(lambda t2: t2[::-1], prefix_url_dict.items()))
all_triples = kg.get_all_triples()
spo_df = pd.DataFrame(all_triples)
spo_df_simple = spo_df.copy()
spo_df_simple = spo_df_simple.applymap(lambda x: x["value"]).applymap(lambda x:
(list(filter(lambda t2: x.startswith(t2[0]), url_prefix_dict.items()))[0], x) if any(map(lambda t2: x.startswith(t2[0]), url_prefix_dict.items())) else (None, x)
).applymap(
lambda t2: t2[1].replace(t2[0][0], "{}:".format(t2[0][1])) if t2[0] is not None else t2[1]
).applymap(unquote)
'''
#### like property in wikidata
spo_df_simple["p"].map(
lambda x: x[3:] if x.startswith("hp:") else np.nan
).dropna().value_counts()
#### others in p col (rdf:type)
spo_df_simple["p"].map(
lambda x: x if not x.startswith("hp:") else np.nan
).dropna().value_counts()
#### groupby different entity type view
pd.concat(
list(map(
lambda t2: t2[1].head(2),
list(spo_df_simple[
spo_df_simple["p"] == "rdf:type"
].sort_values(by = ["o", "s"]).groupby("o"))
)), axis = 0).head(30)
'''
#### spo s(type)o
#### use deepl translate to lookup
#spo_trans_total_df = pd.read_csv("../data/spo_trans_total.csv")
spo_trans_total_df = pd.read_csv("data/spo_trans_total.csv")
spo_trans_dict = dict(spo_trans_total_df.values.tolist())
'''
with open("../data/spo_trans_dict.json", "w") as f:
json.dump(spo_trans_dict, f)
'''
spo_trans_back_dict = dict(map(lambda t2: t2[::-1], spo_trans_dict.items()))
spo_df_simple_keyed = spo_df_simple.copy()
def map_to_trans_key(src):
x = str(src)
if not x.startswith("hp:"):
return np.nan
return x[3:].replace('"', '').replace("'", '').replace("_", " ")
spo_df_simple_trans = spo_df_simple_keyed.applymap(
lambda x: (x ,map_to_trans_key(x))
).applymap(
lambda t2: spo_trans_dict.get(t2[1], t2[0]) if type(t2[1]) == type("") else t2[0]
)
'''
pd.concat(
list(map(
lambda t2: t2[1].head(2),
list(spo_df_simple_trans[
spo_df_simple_trans["p"] == "rdf:type"
].sort_values(by = ["o", "s"]).groupby("o"))
)), axis = 0).head(50)
spo_df_simple_trans[
spo_df_simple_trans["s"] == "斯蒂芬-康福特"
]
'''
model_dir = "data/"
kgqa_retriever = Text2SparqlRetriever(knowledge_graph=kg, model_name_or_path=model_dir + "hp_v3.4")
def decode_query(eng_query ,kgqa_retriever, top_k = 3):
self = kgqa_retriever
inputs = self.tok([eng_query], max_length=100, truncation=True, return_tensors="pt")
# generate top_k+2 SPARQL queries so that we can dismiss some queries with wrong syntax
temp = self.model.generate(
inputs["input_ids"], num_beams=max(5, top_k + 2), max_length=100, num_return_sequences=top_k + 2, early_stopping=True
)
sparql_queries = [
self.tok.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in temp
]
return sparql_queries
import re
from uuid import uuid1
import jionlp as jio
special_match_token_list = [
" filter(",
]
def fill_bk(str_):
#assert str_[0] == "("
req = []
cnt = 0
have_match_one = False
for char in str_:
#print(req)
if char == "(":
cnt += 1
have_match_one = True
if char == ")":
cnt -= 1
req.append(char)
if cnt == 0 and have_match_one:
break
return "".join(req)
def match_special_token(query, special_match_token_list):
assert type(query) == type("")
assert type(special_match_token_list) == type([])
special_match_token_list_ = list(filter(lambda x: x in query, special_match_token_list))
if not special_match_token_list_:
return []
return list(map(lambda x: (x ,
fill_bk(
query[query.find(x):]
)
), special_match_token_list_))
def retrieve_sent_split(sent,
stops_split_pattern = "|".join(map(lambda x: r"\{}".format(x),
" "))
):
if not sent.strip():
return []
split_list = re.split(stops_split_pattern, sent)
return split_list
import jionlp as jio
ask_l = [
"?answer", "?value", "?obj", "?sbj", "?s", "?x", "?a"
]
ask_ner = jio.ner.LexiconNER({
"ask": ask_l
})
def query_to_t3(query, filter_list = [], ask_ner = ask_ner):
'''
query = query.replace("?answer", " ?answer ")
query = query.replace("?value", " ?value ")
query = query.replace("?obj", " ?obj ")
query = query.replace("?sbj", " ?sbj ")
query = query.replace("?s", " ?s ")
query = query.replace("?x", " ?x ")
'''
l = ask_ner(query)
l = sorted(set(map(lambda x: x["text"], l)), key = len, reverse = True)
for k in l:
query = query.replace(k, " {} ".format(k))
'''
if "where" not in query and "WHERE" not in query:
return []
'''
special_token_list = match_special_token(query, special_match_token_list)
#return special_token_list
if special_token_list:
special_token_list = list(set(map(lambda t2: t2[1] ,special_token_list)))
uid_special_token_dict = dict(map(lambda x: (str(uuid1()), x), special_token_list))
special_token_uid_dict = dict(map(lambda t2: t2[::-1], uid_special_token_dict.items()))
assert len(special_token_uid_dict) == len(uid_special_token_dict)
for k, v in sorted(special_token_uid_dict.items(), key = lambda t2: len(t2[0]), reverse = True):
if k in query:
#query = query.replace(k, v)
query = query.replace(k, "")
else:
uid_special_token_dict = {}
special_token_uid_dict = {}
'''
if "where" in query:
tail = "where".join(query.split("where")[1:])
elif "WHERE" in query:
tail = "WHERE".join(query.split("WHERE")[1:])
'''
#return query
query = query.strip()
if not query.endswith("}"):
query = query + "}"
tail = re.findall(r"{(.*)}", query)
#return tail
#return t3_list
if not tail:
return []
else:
tail = tail[0]
t3_list = list(map(lambda x: x.strip() ,tail.split(".")))
t3_list_ = []
for ele in t3_list:
for k, v in uid_special_token_dict.items():
if k in ele:
ele = ele.replace(k, v)
t3_list_.append(ele)
t3_list = t3_list_
if filter_list:
t3_list = list(filter(lambda x:
any(map(lambda y: y in x ,filter_list))
, t3_list))
t3_list = list(map(lambda x:
list(filter(lambda y: y.strip() ,retrieve_sent_split(x)))
, t3_list))
return t3_list
def decode_property(eng_query ,kgqa_retriever, top_k = 3):
sparql_queries = decode_query(eng_query, kgqa_retriever, top_k = top_k)
if not sparql_queries:
return []
t3_nest_list = list(map(lambda x: query_to_t3(x), sparql_queries))
####return t3_nest_list
p_nest_list = []
for ele in t3_nest_list:
for e in ele:
if len(e) == 3:
p_nest_list.append(e)
#p_nest_list = list(filter(lambda x: len(x) == 3, t3_nest_list))
if not p_nest_list:
return []
p_nest_list = list(map(lambda x: x[1], p_nest_list))
return p_nest_list
'''
#### ori query decoder
query = "Harry Potter live in which house?"
query = "when was Stephen cornfoot born?"
decode_query(query, kgqa_retriever)
#### ori query decoder only maintain property part
query = "Harry Potter live in which house in 1920?"
query = "Harry live in where?"
query = "Harry live in where?"
query = "when was Stephen cornfoot born?"
query = "what is Stephen's loyalty?"
decode_property(query, kgqa_retriever)
query = "who is the leader of Divination homework meeting?"
'''
def template_fullfill_reconstruct_query(entity_list = ["http://www.wikidata.org/entity/Q42780"]
, property_list = ["http://www.wikidata.org/prop/direct/P131",
"http://www.wikidata.org/prop/direct/P150"
],
generate_t3_func = lambda el, pl: pd.Series(list(product(el, pl))).map(
lambda ep: [(ep[0], ep[1], "?a"), ("?a", ep[1], ep[0])]
).explode().dropna().drop_duplicates().tolist()
):
assert type(entity_list) == type([])
assert type(property_list) == type([])
if not entity_list or not property_list:
return []
query_list = list(map(list ,generate_t3_func(entity_list, property_list)))
if not query_list:
return []
req = list(map(lambda x: "select ?a {" + " ".join(x) + "}", query_list))
return req
'''
sparql_queries_reconstruct = template_fullfill_reconstruct_query(
["hp:Divination_homework_meeting"],
["hp:leader"]
)
sparql_queries_reconstruct
'''
def run_sparql_queries(sparql_queries, kgqa_retriever, top_k = 3):
self = kgqa_retriever
answers = []
for sparql_query in sparql_queries:
ans, query = self._query_kg(sparql_query=sparql_query)
if len(ans) > 0:
answers.append((ans, query))
# if there are no answers we still want to return something
if len(answers) == 0:
answers.append(("", ""))
results = answers[:top_k]
results = [self.format_result(result) for result in results]
return results
'''
#### one conclusion
run_sparql_queries(sparql_queries_reconstruct, kgqa_retriever)
'''
#### start kbqa_protable_service (server)
def retrieve_et(zh_question, only_e = True):
assert type(zh_question) == type("")
'''
qst = zh_question
rep = requests.post(
url = "http://localhost:8855/extract_et",
data = {
"question": qst
}
)
output = json.loads(rep.content.decode())
'''
output = call_entity_property_extract(zh_question)
if only_e:
return output.get("E-TAG", [])
return output
'''
#### start qa server
def retrieve_head(zh_question):
req = requests.post(
url = "http://localhost:8811/qa_downstream_process",
data = {
"entity": "",
"question": zh_question,
"context": zh_question
}
)
output = json.loads(req.content.decode())
if "head" in output:
return output["head"]
return ""
'''
def retrieve_head(zh_question):
output = qa_downstream_process(
"", zh_question, zh_question
)
assert type(output) == type({})
if "head" in output:
return output["head"]
return ""
'''
zh_question = "谁是占卜会议的领导者?"
retrieve_et(zh_question)
'''
def property_and_type_slice(spo_df_simple_trans, p_l = [], type_l = []):
req = spo_df_simple_trans.copy()
if type_l:
s_l = req[
req["o"].isin(type_l)
]["s"].drop_duplicates().dropna().values.tolist()
req = req[
req["s"].isin(s_l)
]
if req.size == 0:
return None
if p_l:
s_l = req[
req["p"].isin(p_l)
]["s"].drop_duplicates().dropna().values.tolist()
req = req[
req["s"].isin(s_l)
]
if req.size == 0:
return None
return req
'''
### Organisation_ sanple
property_and_type_slice(
spo_df_simple_trans, p_l = ["创立"], type_l = ["hp:Organisation_"]
).sort_values(by = "s")["s"].drop_duplicates().sample(n = 30)
### people sample
property_and_type_slice(
spo_df_simple_trans, p_l = ["出生"], type_l = ["hp:Individual_"]
).sort_values(by = "s")["s"].drop_duplicates().sample(n = 30)
zh_question = "谁是占卜会议的领导者?"
en_question = zh_en_naive_model.translate([zh_question], source_lang="zh", target_lang = "en")[0]
en_properties = decode_property(en_question, kgqa_retriever)
en_properties
'''
all_en_p = spo_df_simple["p"].drop_duplicates().dropna().values.tolist()
all_en_p_tokens = pd.Series(list(map(lambda x: x[3:].split("_") ,filter(lambda x: x.startswith("hp:"), all_en_p)))).explode().dropna().map(
lambda x: x if bool(x) else np.nan
).dropna().drop_duplicates().values.tolist()
###all_en_p_tokens[:10]
all_p_df = pd.Series(all_en_p).reset_index().iloc[:, 1:]
all_p_df.columns = ["en_p"]
all_p_df = all_p_df[
all_p_df["en_p"] != "rdf:type"
]
all_p_df["zh_p"] = all_p_df["en_p"].map(
lambda x: spo_trans_dict.get(x.replace("hp:", "").replace("_", " "), x.replace("hp:", "").replace("_", " "))
)
#all_p_df
#### decoder property mapping: (map decoder to kb exists)
decode_map_config_dict = {
"hp:birth": 'hp:born',
'hp:birthday': "hp:born"
}
#### decoder sim property mapping: (decoder that can not distinguish)
decode_sim_config_dict = {
'hp:ingredients': "hp:characteristics",
"hp:characteristics": 'hp:ingredients'
}
def decode_property_link_to_ori(decode_property, all_en_p, all_en_p_tokens, equal_threshold = 80):
if not decode_property.startswith("hp:") or not len(decode_property) >= 3:
return None
if decode_property in all_en_p:
return [(decode_property, 100.0)]
if decode_property in decode_map_config_dict:
return [(decode_map_config_dict[decode_property], 99.0)]
def filter_by_p_tokens(decode_property):
req = []
for ele in decode_property[3:].split("_"):
if ele in all_en_p_tokens:
req.append(ele)
return "hp:{}".format("_".join(req))
if decode_property == "hp:":
return None
decode_property = filter_by_p_tokens(decode_property)
order_list = sorted(map(lambda x: (x, fuzz.ratio(x, decode_property)), all_en_p), key = lambda t2: t2[1], reverse = True)
return order_list[:10]
'''
#### minimize maintain one token sorted.
decode_property_link_to_ori("hp:born", all_en_p, all_en_p_tokens, equal_threshold = 80)
decode_property_link_to_ori("hp:birth", all_en_p, all_en_p_tokens, equal_threshold = 80)
decode_property_link_to_ori("hp:head_of_the_assembly", all_en_p, all_en_p_tokens, equal_threshold = 80)
'''
def output_to_dict(output, trans_keys = ["answers"]):
non_trans_t2_list = list(filter(lambda t2: t2[0] not in trans_keys, output.items()))
trans_t2_list = list(map(lambda tt2: (
tt2[0],
list(map(lambda x: x.to_dict(), tt2[1]))
) ,filter(lambda t2: t2[0] in trans_keys, output.items())))
#return trans_t2_list
return dict(trans_t2_list + non_trans_t2_list)
def zh_question_to_p_zh_en_map(zh_question, top_k = 3):
#zh_question = "谁是占卜会议的领导者?"
#en_question = zh_en_naive_model.translate([zh_question], source_lang="zh", target_lang = "en")[0]
en_question = call_zh_en_naive_model(zh_question)
en_properties = decode_property(en_question, kgqa_retriever, top_k = top_k)
if not en_properties:
return None
en_properties_top_sort = pd.Series(en_properties).value_counts().index.tolist()
en_properties_mapped = list(map(
lambda x: decode_property_link_to_ori(x, all_en_p, all_en_p_tokens, equal_threshold = 80), en_properties_top_sort
))
en_properties_mapped = list(filter(lambda x: hasattr(x, "__len__") and len(x) >= 1, en_properties_mapped))
if not en_properties_mapped:
return None
en_properties_mapped = list(map(lambda x: x[0] ,en_properties_mapped))
en_properties_mapped_df = pd.DataFrame(en_properties_mapped)
assert en_properties_mapped_df.shape[1] == 2
en_properties_mapped_df.columns = ["en_property", "score"]
'''
en_properties_mapped_df["zh_property"] = en_properties_mapped_df["en_property"].map(
lambda x: en_zh_reader.predict_on_texts(
question=x.replace("hp:", ""),
texts=[zh_question]
)
).map(output_to_dict)
'''
en_properties_mapped_df["zh_property"] = en_properties_mapped_df["en_property"].map(
lambda x: call_en_zh_reader(
x.replace("hp:", ""),
zh_question
)
)
en_properties_mapped_df["zh_property"] = en_properties_mapped_df["zh_property"].map(lambda x: x["answers"][0] if x["answers"] else {})
en_properties_mapped_df = en_properties_mapped_df[
en_properties_mapped_df["zh_property"].map(bool)
]
if en_properties_mapped_df is None or en_properties_mapped_df.size == 0:
return None
#return nerd_df
en_properties_mapped_df["ext_score"] = en_properties_mapped_df["zh_property"].map(
lambda x: x["score"]
)
en_properties_mapped_df["zh_property"] = en_properties_mapped_df["zh_property"].map(
lambda x: x["answer"]
)
'''
en_properties_mapped_df = en_properties_mapped_df[
en_properties_mapped_df["ext_score"].map(lambda x: x > score_threshold)
]
'''
if en_properties_mapped_df is None or en_properties_mapped_df.size == 0:
return None
ask_head = retrieve_head(zh_question)
#if type(ask_head) == type("") and "什么" in ask_head:
if type(ask_head) == type(""):
#ask_head = ask_head.replace("什么", "")
first_d = en_properties_mapped_df.iloc[0].to_dict()
first_d["zh_property"] = ask_head
en_properties_mapped_df = pd.DataFrame(
[first_d] + en_properties_mapped_df.apply(lambda x: x.to_dict(), axis = 1).values.tolist()
)
else:
pass
en_properties_mapped_df = en_properties_mapped_df[
en_properties_mapped_df["zh_property"].map(lambda x: bool(x))
].drop_duplicates()
return en_properties_mapped_df
def search_sym_p(question_p_df, all_p_df):
#zh_p_l = question_p_df["zh_property"].drop_duplicates().values.tolist()
#en_p_l = question_p_df["en_property"].drop_duplicates().values.tolist()
req = []
for idx, r in question_p_df.iterrows():
all_p_score_df = all_p_df.copy()
all_p_score_df["zh_property"] = [r["zh_property"]] * len(all_p_score_df)
all_p_score_df["en_property"] = [r["en_property"]] * len(all_p_score_df)
req.append(all_p_score_df)
req = pd.concat(req, axis = 0)
req["zh_sim"] = req.apply(
lambda x: synonyms.compare(x["zh_property"], x["zh_p"]), axis = 1
)
req = req.sort_values(by = "zh_sim", ascending = False)
return req
all_en_ents = pd.Series(spo_df_simple[["s", "o"]].values.reshape([-1])).drop_duplicates().values.tolist()
all_ents_df = pd.Series(all_en_ents).reset_index().iloc[:, 1:]
all_ents_df.columns = ["en_ent"]
all_ents_df = all_ents_df[
all_ents_df["en_ent"] != "rdf:type"
]
all_ents_df["zh_ent"] = all_ents_df["en_ent"].map(
lambda x: spo_trans_dict.get(x.replace("hp:", "").replace("_", " "), x.replace("hp:", "").replace("_", " "))
)
#all_ents_df
def search_sym_entity(entity_str, all_ents_df, use_syn = False):
#zh_p_l = question_p_df["zh_property"].drop_duplicates().values.tolist()
#en_p_l = question_p_df["en_property"].drop_duplicates().values.tolist()
req = all_ents_df.copy()
req["entity_str"] = [entity_str] * len(req)
if use_syn:
req["zh_sim"] = req.apply(
lambda x: synonyms.compare(x["zh_ent"], x["entity_str"]), axis = 1
)
else:
req["zh_sim"] = req.apply(
lambda x: fuzz.ratio(x["zh_ent"], x["entity_str"]), axis = 1
)
req = req.sort_values(by = "zh_sim", ascending = False)
return req
zh_question = "谁是占卜会议的领导者?"
zh_question = "洛林出生在哪个国家?"
zh_question = "洛林出生在哪个地方?"
zh_question = "洛林的血缘是什么?"
zh_question = "洛林的生日是什么?"
zh_question = "洛林的家族是什么?"
zh_question = "洛林的性别是什么?"
zh_question = "洛林的标题是什么?"
zh_question = "洛林的主题是什么?"
zh_question = "这个物品的特征是什么?"
zh_question = "强效祛斑药水的特征是什么?"
zh_question = "魔法学校的成立日期是什么?"
zh_question = "魔法学校的校长是谁?"
question_p_df = zh_question_to_p_zh_en_map(zh_question)
#question_p_df
#### top en_p as consider (high zh_sim)
#### need preload to precaculate all candidates in all_p_df
sym_p_df = search_sym_p(question_p_df, all_p_df)
#sym_p_df
'''
#### this can be done, all related with translate accurate
entity_str = "占卜会议"
search_sym_entity(entity_str, all_ents_df)
#### re translate in massive times
pd.Series(list(spo_trans_dict.keys())).to_csv("../data/all_consider.csv", index = False)
'''
#### ->
'''
sparql_queries_reconstruct = template_fullfill_reconstruct_query(
["hp:Divination_homework_meeting"],
["hp:leader"]
)
sparql_queries_reconstruct
'''
def from_zh_question_to_consider_queries(zh_question, top_k = 32, top_p_k = 5, top_e_k = 50, kgqa_retriever = kgqa_retriever,):
zh_ents = retrieve_et(zh_question)
if type(zh_ents) != type([]) or not zh_ents:
return None
question_p_df = zh_question_to_p_zh_en_map(zh_question, top_k = top_p_k)
if not hasattr(question_p_df, "size") or question_p_df.size == 0:
return None
### en_p
sym_p_df = search_sym_p(question_p_df, all_p_df)
if not hasattr(sym_p_df, "size") or sym_p_df.size == 0:
return None
sim_entity_df_list = []
for entity_str in zh_ents:
sym_ent_df = search_sym_entity(entity_str, all_ents_df)
if not hasattr(sym_ent_df, "size") or sym_ent_df.size == 0:
continue
sim_entity_df_list.append(sym_ent_df)
if type(sim_entity_df_list) != type([]) or not sim_entity_df_list:
return None
#### en_ent
sym_ent_df = pd.concat(sim_entity_df_list, axis = 0).sort_values(by = "zh_sim", ascending = False)
#return sym_p_df, sym_ent_df
top_p = sym_p_df["en_p"].drop_duplicates().dropna().head(top_p_k).values.tolist()
top_e = sym_ent_df["en_ent"].drop_duplicates().dropna().head(top_e_k).values.tolist()
print(
top_e
)
print(
top_p
)
if not top_p or not top_e:
return None
sparql_queries_reconstruct = template_fullfill_reconstruct_query(
top_e,
top_p
)
#return sparql_queries_reconstruct
if not sparql_queries_reconstruct:
return None
output = run_sparql_queries(sparql_queries_reconstruct, kgqa_retriever, top_k = top_k)
return sparql_queries_reconstruct ,output
def trans_output(zh_question ,output):
if type(output) != type([]):
return output
def single_trans(d):
assert type(d) == type({})
if not d:
return d
req = {}
answer = d.get("answer")
if type(answer) == type([]):
answer = list(map(lambda x:
spo_trans_dict.get(x.split("/")[-1].replace("_", " "),
x.split("/")[-1].replace("_", " ")
) if x.startswith("https://deepset.ai/harry_potter") else x
, answer))
sparql_query = d.get("prediction_meta")
if sparql_query is not None:
sparql_query = sparql_query.get("sparql_query")
if type(sparql_query) == type(""):
t3_in_query = query_to_t3(sparql_query)
hp_l = pd.Series(np.asarray(t3_in_query).reshape([-1])).map(lambda x: x[3:] if x.startswith("hp:") else np.nan).dropna().drop_duplicates().values.tolist()
for ele in sorted(hp_l, key = len, reverse = True):
sparql_query = sparql_query.replace(ele, spo_trans_dict.get(ele.split("/")[-1].replace("_", " "),
ele.split("/")[-1].replace("_", " ")))
if answer is not None:
req["answer"] = answer
if sparql_query is not None:
req["sparql_query"] = sparql_query
return req
output_trans = list(map(single_trans, output))
output_trans = sorted(output_trans, key = lambda d:
synonyms.compare(zh_question, " " if d.get("sparql_query", " ") else " ") if type(d) == type({}) else 0.0
, reverse = True)
return output_trans
def ranking_output(zh_question, zh_output):
e_t_dict = retrieve_et(zh_question, only_e=False)
e = e_t_dict.get("E-TAG", [])
t = e_t_dict.get("T-TAG", [])
e, t = map(" ".join, [e, t])
print(e, t)
df = pd.DataFrame(zh_output)
df = df.explode("answer")
#### e query
df["e_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
list(filter(lambda y: "?" not in y ,
list(np.asarray(x.split())[[0, -1]])
))
).map(" ".join).map(lambda x:
[e, x.split(":")[-1]]
).map(lambda x: list(map(lambda y:
y.replace(" ", "") ,x))).map(lambda x:
fuzz.ratio(*x))
df["t_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
list(filter(lambda y: "?" not in y ,
x.split()[1]
))
).map(" ".join).map(lambda x:
[t, x.split(":")[-1]]
).map(lambda x: list(map(lambda y:
y.replace(" ", "") ,x))).map(lambda x:
fuzz.ratio(*x))
#df["a_score"] = df["answer"].map(lambda x: [x, t]).map(lambda x: synonyms.compare(*x)) * 100
df["et_score"] = df[["e_score", "t_score", ]].sum(axis = 1)
df = df.sort_values(by = "et_score", ascending = False)
if df["et_score"].iloc[0] >= 50:
return df
df["e_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
list(filter(lambda y: "?" not in y ,
list(np.asarray(x.split())[[0, -1]])
))
).map(" ".join).map(lambda x:
[e, x.split(":")[-1]]
).map(lambda x: list(map(lambda y:
y.replace(" ", "") ,x))).map(lambda x:
synonyms.compare(*x))
df["t_score"] = df["sparql_query"].map(lambda x: re.findall("{(.*)}" ,x)[0]).map(lambda x:
list(filter(lambda y: "?" not in y ,
x.split()[1]
))
).map(" ".join).map(lambda x:
[t, x.split(":")[-1]]
).map(lambda x: list(map(lambda y:
y.replace(" ", "") ,x))).map(lambda x:
synonyms.compare(*x))
#df["a_score"] = df["answer"].map(lambda x: [x, t]).map(lambda x: synonyms.compare(*x))
#df["a_score"] = df["a_score"] / 100.0
df["et_score"] = df[["e_score", "t_score", ]].sum(axis = 1)
df = df.sort_values(by = "et_score", ascending = False)
return df
if __name__ == "__main__":
#### 血缘 need fintune, tackle with ranking_output
#### top3 to top5 recall design
zh_question = "哈利波特的血缘是什么?"
#output = from_zh_question_to_consider_queries(zh_question)
output = from_zh_question_to_consider_queries(zh_question,
top_k = 32, top_p_k = 30, top_e_k = 50
)
if type(output) == type((1,)):
query_list, output = output
zh_output = trans_output(zh_question ,output)
else:
zh_output = None
zh_output
ranking_output(zh_question, zh_output)
zh_question = "哈利波特的生日是什么?"
#output = from_zh_question_to_consider_queries(zh_question)
output = from_zh_question_to_consider_queries(zh_question,
top_k = 32, top_p_k = 30, top_e_k = 50
)
if type(output) == type((1,)):
query_list, output = output
zh_output = trans_output(zh_question ,output)
else:
zh_output = None
zh_output
ranking_output(zh_question, zh_output)
zh_question = "史内普的生日是什么时候?"
#output = from_zh_question_to_consider_queries(zh_question)
output = from_zh_question_to_consider_queries(zh_question,
top_k = 32, top_p_k = 30, top_e_k = 50
)
if type(output) == type((1,)):
query_list, output = output
zh_output = trans_output(zh_question ,output)
else:
zh_output = None
zh_output
ranking_output(zh_question, zh_output)
zh_question = "占卜会议的领导者是谁?"
#output = from_zh_question_to_consider_queries(zh_question)
output = from_zh_question_to_consider_queries(zh_question,
top_k = 32, top_p_k = 30, top_e_k = 50
)
if type(output) == type((1,)):
query_list, output = output
zh_output = trans_output(zh_question ,output)
else:
zh_output = None
zh_output
ranking_output(zh_question, zh_output)
zh_question = "纽约卫生局的创立时间是什么?"
#output = from_zh_question_to_consider_queries(zh_question)
output = from_zh_question_to_consider_queries(zh_question,
top_k = 32, top_p_k = 30, top_e_k = 50
)
if type(output) == type((1,)):
query_list, output = output
zh_output = trans_output(zh_question ,output)
else:
zh_output = None
zh_output
ranking_output(zh_question, zh_output)
zh_question = "法兰西魔法部记录室位于哪个城市?"
#output = from_zh_question_to_consider_queries(zh_question)
output = from_zh_question_to_consider_queries(zh_question,
top_k = 32, top_p_k = 30, top_e_k = 50
)
if type(output) == type((1,)):
query_list, output = output
zh_output = trans_output(zh_question ,output)
else:
zh_output = None
zh_output
ranking_output(zh_question, zh_output)
zh_question = "邓布利多的出生日期是什么?"
#output = from_zh_question_to_consider_queries(zh_question)
output = from_zh_question_to_consider_queries(zh_question,
top_k = 32, top_p_k = 30, top_e_k = 50
)
if type(output) == type((1,)):
query_list, output = output
zh_output = trans_output(zh_question ,output)
else:
zh_output = None
zh_output
ranking_output(zh_question, zh_output)
zh_question = "哥布林叛乱发生在什么日期?"
#output = from_zh_question_to_consider_queries(zh_question, top_p_k = 50)
output = from_zh_question_to_consider_queries(zh_question,
top_k = 32, top_p_k = 30, top_e_k = 50
)
if type(output) == type((1,)):
query_list, output = output
zh_output = trans_output(zh_question ,output)
else:
zh_output = None
zh_output
ranking_output(zh_question, zh_output)
zh_question = "决斗比赛的参与者是谁?"
#output = from_zh_question_to_consider_queries(zh_question)
output = from_zh_question_to_consider_queries(zh_question,
top_k = 32, top_p_k = 30, top_e_k = 50
)
if type(output) == type((1,)):
query_list, output = output
zh_output = trans_output(zh_question ,output)
else:
zh_output = None
zh_output
ranking_output(zh_question, zh_output)
zh_question = "赫敏的丈夫是谁?"
#output = from_zh_question_to_consider_queries(zh_question)
output = from_zh_question_to_consider_queries(zh_question,
top_k = 32, top_p_k = 30, top_e_k = 50
)
if type(output) == type((1,)):
query_list, output = output
zh_output = trans_output(zh_question ,output)
else:
zh_output = None
zh_output
ranking_output(zh_question, zh_output)
|