File size: 31,111 Bytes
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee40bd7
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee40bd7
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee40bd7
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a326aed
ee40bd7
5c72fe4
 
a326aed
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a326aed
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
5549b66
a326aed
5c72fe4
 
 
 
 
 
ee40bd7
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c343cc3
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
c343cc3
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import argparse
import os
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.data import DataLoader
import pickle
print("here1",os.getcwd())
from src.dataset import TokenizerDataset, TokenizerDatasetForCalibration
from src.vocab import Vocab
print("here3",os.getcwd())
from src.bert import BERT
from src.seq_model import BERTSM
from src.classifier_model import BERTForClassification, BERTForClassificationWithFeats
# from src.new_finetuning.optim_schedule import ScheduledOptim
import metrics, recalibration, visualization
from recalibration import ModelWithTemperature
import tqdm
import sys
import time
import numpy as np

from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, roc_curve, roc_auc_score
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from collections import defaultdict
print("here3",os.getcwd())
class BERTFineTuneTrainer:
    
    def __init__(self, bertFinetunedClassifierwithFeats: BERT, #BERTForClassificationWithFeats
                 vocab_size: int, test_dataloader: DataLoader = None,
                 lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000,
                 with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, 
                 num_labels=2, log_folder_path: str = None):
        """
        :param bert: BERT model which you want to train
        :param vocab_size: total word vocab size
        :param test_dataloader: test dataset data loader [can be None]
        :param lr: learning rate of optimizer
        :param betas: Adam optimizer betas
        :param weight_decay: Adam optimizer weight decay param
        :param with_cuda: traning with cuda
        :param log_freq: logging frequency of the batch iteration
        """

        # Setup cuda device for BERT training, argument -c, --cuda should be true
        # cuda_condition = torch.cuda.is_available() and with_cuda
        # self.device = torch.device("cuda:0" if cuda_condition else "cpu")
        self.device = torch.device("cpu") #torch.device("cuda:0" if cuda_condition else "cpu")
        # print(cuda_condition, " Device used = ", self.device)
        print(" Device used = ", self.device)
        
        # available_gpus = list(range(torch.cuda.device_count()))

        # This BERT model will be saved every epoch
        self.model = bertFinetunedClassifierwithFeats.to("cpu")
        print(self.model.parameters())
        for param in self.model.parameters():
            param.requires_grad = False
        # Initialize the BERT Language Model, with BERT model
        # self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device)
        # self.model = BERTForClassificationWithFeats(self.bert, num_labels, 8).to(self.device)
        # self.model = bertFinetunedClassifierwithFeats
        # print(self.model.bert.parameters())
        # for param in self.model.bert.parameters():
        #     param.requires_grad = False
        # BERTForClassificationWithFeats(self.bert, num_labels, 18).to(self.device)
        
        # self.model = BERTForClassificationWithFeats(self.bert, num_labels, 1).to(self.device)
        # Distributed GPU training if CUDA can detect more than 1 GPU
        # if with_cuda and torch.cuda.device_count() > 1:
        #     print("Using %d GPUS for BERT" % torch.cuda.device_count())
        #     self.model = nn.DataParallel(self.model, device_ids=available_gpus)

        # Setting the train, validation and test data loader
        # self.train_data = train_dataloader
        # self.val_data = val_dataloader
        self.test_data = test_dataloader
    
        # self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay) #, eps=1e-9
        self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay)
        # self.optim_schedule = ScheduledOptim(self.optim, self.model.bert.hidden, n_warmup_steps=warmup_steps)
        # self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1)
        self.criterion = nn.CrossEntropyLoss()

        # if num_labels == 1:
        #     self.criterion = nn.MSELoss()
        # elif num_labels == 2:
        #     self.criterion = nn.BCEWithLogitsLoss()
        #     # self.criterion = nn.CrossEntropyLoss()
        # elif num_labels > 2:
            # self.criterion = nn.CrossEntropyLoss()
            # self.criterion = nn.BCEWithLogitsLoss()
        
        
        self.log_freq = log_freq
        self.log_folder_path = log_folder_path
        # self.workspace_name = workspace_name
        # self.finetune_task = finetune_task
        # self.save_model = False
        # self.avg_loss = 10000
        self.start_time = time.time()
        # self.probability_list = []
        for fi in ['test']: #'val', 
            f = open(self.log_folder_path+f"/log_{fi}_finetuned.txt", 'w')
            f.close()
        print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))

    # def train(self, epoch):
    #     self.iteration(epoch, self.train_data)

    # def val(self, epoch):
    #     self.iteration(epoch, self.val_data, phase="val")
        
    def test(self, epoch):
        # if epoch == 0:
        #     self.avg_loss = 10000
        self.iteration(epoch, self.test_data, phase="test")

    def iteration(self, epoch, data_loader, phase="train"):
        """
        loop over the data_loader for training or testing
        if on train status, backward operation is activated
        and also auto save the model every peoch

        :param epoch: current epoch index
        :param data_loader: torch.utils.data.DataLoader for iteration
        :param train: boolean value of is train or test
        :return: None
        """
        
        # Setting the tqdm progress bar
        data_iter = tqdm.tqdm(enumerate(data_loader),
                              desc="EP_%s:%d" % (phase, epoch),
                              total=len(data_loader),
                              bar_format="{l_bar}{r_bar}")

        avg_loss = 0.0
        total_correct = 0
        total_element = 0
        plabels = []
        tlabels = []
        probabs = []
        positive_class_probs=[]
        if phase == "train":
            self.model.train()
        else:
            self.model.eval()
        # self.probability_list = []
        
        with open(self.log_folder_path+f"/log_{phase}_finetuned.txt", 'a') as f:
            sys.stdout = f
            for i, data in data_iter:
                # 0. batch_data will be sent into the device(GPU or cpu)
                data = {key: value.to(self.device) for key, value in data.items()}
                if phase == "train":
                    logits = self.model.forward(data["input"], data["segment_label"], data["feat"])
                else:
                    with torch.no_grad():
                        logits = self.model.forward(data["input"].cpu(), data["segment_label"].cpu(), data["feat"].cpu())

                logits = logits.cpu()
                loss = self.criterion(logits, data["label"])
                # if torch.cuda.device_count() > 1:
                #     loss = loss.mean()

                # 3. backward and optimization only in train
                # if phase == "train":
                #     self.optim_schedule.zero_grad()
                #     loss.backward()
                #     self.optim_schedule.step_and_update_lr()

                # prediction accuracy
                probs = nn.Softmax(dim=-1)(logits) # Probabilities
                probabs.extend(probs.detach().cpu().numpy().tolist())
                predicted_labels = torch.argmax(probs, dim=-1) #correct
                # self.probability_list.append(probs)
                # true_labels = torch.argmax(data["label"], dim=-1)
                plabels.extend(predicted_labels.cpu().numpy())
                tlabels.extend(data['label'].cpu().numpy())
                positive_class_probs = [prob[1] for prob in probabs]
                # Compare predicted labels to true labels and calculate accuracy
                correct = (data['label'] == predicted_labels).sum().item()
                
                avg_loss += loss.item()
                total_correct += correct
                # total_element += true_labels.nelement()
                total_element += data["label"].nelement()
                # print(">>>>>>>>>>>>>>", predicted_labels, true_labels, correct, total_correct, total_element)
                
                post_fix = {
                    "epoch": epoch,
                    "iter": i,
                    "avg_loss": avg_loss / (i + 1),
                    "avg_acc": total_correct / total_element * 100 if total_element != 0 else 0,
                    "loss": loss.item()
                }
                if i % self.log_freq == 0:
                    data_iter.write(str(post_fix))
            
            precisions = precision_score(tlabels, plabels, average="weighted", zero_division=0)
            recalls = recall_score(tlabels, plabels, average="weighted")
            f1_scores = f1_score(tlabels, plabels, average="weighted")
            cmatrix = confusion_matrix(tlabels, plabels)
            end_time = time.time()
            auc_score = roc_auc_score(tlabels, positive_class_probs)
            final_msg = {
                "avg_loss": avg_loss / len(data_iter),
                "total_acc": total_correct * 100.0 / total_element,
                "precisions": precisions,
                "recalls": recalls,
                "f1_scores": f1_scores,
                # "confusion_matrix": f"{cmatrix}",
                # "true_labels": f"{tlabels}",
                # "predicted_labels": f"{plabels}",
                "time_taken_from_start": end_time - self.start_time,
                "auc_score":auc_score
            }
            with open("result.txt", 'w') as file:
                for key, value in final_msg.items():
                    file.write(f"{key}: {value}\n")
            print(final_msg)
            # print(type(plabels),type(tlabels),plabels,tlabels) 
            fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
            with open("roc_data.pkl", "wb") as f:
                pickle.dump((fpr, tpr, thresholds), f)
            with open("roc_data2.pkl", "wb") as f:
                pickle.dump((tlabels,positive_class_probs), f)                
            print(final_msg)
            f.close()
            with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1:
                sys.stdout = f1
                final_msg = {
                "epoch": f"EP{epoch}_{phase}",
                "confusion_matrix": f"{cmatrix}",
                "true_labels": f"{tlabels if epoch == 0 else ''}",
                "predicted_labels": f"{plabels}",
                "probabilities": f"{probabs}",
                "time_taken_from_start": end_time - self.start_time
                }
                print(final_msg)
                f1.close()
            sys.stdout = sys.__stdout__
        sys.stdout = sys.__stdout__
        

        
class BERTFineTuneCalibratedTrainer:
    
    def __init__(self, bertFinetunedClassifierwithFeats: BERT, #BERTForClassificationWithFeats
                 vocab_size: int, test_dataloader: DataLoader = None,
                 lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000,
                 with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, 
                 num_labels=2, log_folder_path: str = None):
        """
        :param bert: BERT model which you want to train
        :param vocab_size: total word vocab size
        :param test_dataloader: test dataset data loader [can be None]
        :param lr: learning rate of optimizer
        :param betas: Adam optimizer betas
        :param weight_decay: Adam optimizer weight decay param
        :param with_cuda: traning with cuda
        :param log_freq: logging frequency of the batch iteration
        """

        # Setup cuda device for BERT training, argument -c, --cuda should be true
        cuda_condition = torch.cuda.is_available() and with_cuda
        self.device = torch.device("cuda:0" if cuda_condition else "cpu")
        print(cuda_condition, " Device used = ", self.device)
        
        # available_gpus = list(range(torch.cuda.device_count()))

        # This BERT model will be saved every epoch
        self.model = bertFinetunedClassifierwithFeats
        print(self.model.parameters())
        for param in self.model.parameters():
            param.requires_grad = False
        # Initialize the BERT Language Model, with BERT model
        # self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device)
        # self.model = BERTForClassificationWithFeats(self.bert, num_labels, 8).to(self.device)
        # self.model = bertFinetunedClassifierwithFeats
        # print(self.model.bert.parameters())
        # for param in self.model.bert.parameters():
        #     param.requires_grad = False
        # BERTForClassificationWithFeats(self.bert, num_labels, 18).to(self.device)
        
        # self.model = BERTForClassificationWithFeats(self.bert, num_labels, 1).to(self.device)
        # Distributed GPU training if CUDA can detect more than 1 GPU
        # if with_cuda and torch.cuda.device_count() > 1:
        #     print("Using %d GPUS for BERT" % torch.cuda.device_count())
        #     self.model = nn.DataParallel(self.model, device_ids=available_gpus)

        # Setting the train, validation and test data loader
        # self.train_data = train_dataloader
        # self.val_data = val_dataloader
        self.test_data = test_dataloader
    
        # self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay) #, eps=1e-9
        self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay)
        # self.optim_schedule = ScheduledOptim(self.optim, self.model.bert.hidden, n_warmup_steps=warmup_steps)
        # self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1)
        self.criterion = nn.CrossEntropyLoss()

        # if num_labels == 1:
        #     self.criterion = nn.MSELoss()
        # elif num_labels == 2:
        #     self.criterion = nn.BCEWithLogitsLoss()
        #     # self.criterion = nn.CrossEntropyLoss()
        # elif num_labels > 2:
            # self.criterion = nn.CrossEntropyLoss()
            # self.criterion = nn.BCEWithLogitsLoss()
        
        
        self.log_freq = log_freq
        self.log_folder_path = log_folder_path
        # self.workspace_name = workspace_name
        # self.finetune_task = finetune_task
        # self.save_model = False
        # self.avg_loss = 10000
        self.start_time = time.time()
        # self.probability_list = []
        for fi in ['test']: #'val', 
            f = open(self.log_folder_path+f"/log_{fi}_finetuned.txt", 'w')
            f.close()
        print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))

    # def train(self, epoch):
    #     self.iteration(epoch, self.train_data)

    # def val(self, epoch):
    #     self.iteration(epoch, self.val_data, phase="val")
        
    def test(self, epoch):
        # if epoch == 0:
        #     self.avg_loss = 10000
        self.iteration(epoch, self.test_data, phase="test")

    def iteration(self, epoch, data_loader, phase="train"):
        """
        loop over the data_loader for training or testing
        if on train status, backward operation is activated
        and also auto save the model every peoch

        :param epoch: current epoch index
        :param data_loader: torch.utils.data.DataLoader for iteration
        :param train: boolean value of is train or test
        :return: None
        """
        
        # Setting the tqdm progress bar
        data_iter = tqdm.tqdm(enumerate(data_loader),
                              desc="EP_%s:%d" % (phase, epoch),
                              total=len(data_loader),
                              bar_format="{l_bar}{r_bar}")

        avg_loss = 0.0
        total_correct = 0
        total_element = 0
        plabels = []
        tlabels = []
        probabs = []

        if phase == "train":
            self.model.train()
        else:
            self.model.eval()
        # self.probability_list = []
        
        with open(self.log_folder_path+f"/log_{phase}_finetuned.txt", 'a') as f:
            sys.stdout = f
            for i, data in data_iter:
                # 0. batch_data will be sent into the device(GPU or cpu)
                # print(data_pair[0])
                data = {key: value.to(self.device) for key, value in data[0].items()}
                # print(f"data : {data}")
                # data = {key: value.to(self.device) for key, value in data.items()}
                
                # if phase == "train":
                #     logits = self.model.forward(data["input"], data["segment_label"], data["feat"])
                # else:
                with torch.no_grad():
                    # logits = self.model.forward(data["input"], data["segment_label"], data["feat"])
                    logits = self.model.forward(data)

                loss = self.criterion(logits, data["label"])
                if torch.cuda.device_count() > 1:
                    loss = loss.mean()

                # 3. backward and optimization only in train
                # if phase == "train":
                #     self.optim_schedule.zero_grad()
                #     loss.backward()
                #     self.optim_schedule.step_and_update_lr()

                # prediction accuracy
                probs = nn.Softmax(dim=-1)(logits) # Probabilities
                probabs.extend(probs.detach().cpu().numpy().tolist())
                predicted_labels = torch.argmax(probs, dim=-1) #correct
                # self.probability_list.append(probs)
                # true_labels = torch.argmax(data["label"], dim=-1)
                plabels.extend(predicted_labels.cpu().numpy())
                tlabels.extend(data['label'].cpu().numpy())
                positive_class_probs = [prob[1] for prob in probabs]

                # Compare predicted labels to true labels and calculate accuracy
                correct = (data['label'] == predicted_labels).sum().item()
                
                avg_loss += loss.item()
                total_correct += correct
                # total_element += true_labels.nelement()
                total_element += data["label"].nelement()
                # print(">>>>>>>>>>>>>>", predicted_labels, true_labels, correct, total_correct, total_element)
                
                post_fix = {
                    "epoch": epoch,
                    "iter": i,
                    "avg_loss": avg_loss / (i + 1),
                    "avg_acc": total_correct / total_element * 100 if total_element != 0 else 0,
                    "loss": loss.item()
                }
                if i % self.log_freq == 0:
                    data_iter.write(str(post_fix))
            
            precisions = precision_score(tlabels, plabels, average="weighted", zero_division=0)
            recalls = recall_score(tlabels, plabels, average="weighted")
            f1_scores = f1_score(tlabels, plabels, average="weighted")
            cmatrix = confusion_matrix(tlabels, plabels)
            auc_score = roc_auc_score(tlabels, positive_class_probs)
            end_time = time.time()
            final_msg = {
                "this one":"this one",
                "avg_loss": avg_loss / len(data_iter),
                "total_acc": total_correct * 100.0 / total_element,
                "precisions": precisions,
                "recalls": recalls,
                "f1_scores": f1_scores,
                "auc_score":auc_score,
                # "confusion_matrix": f"{cmatrix}",
                # "true_labels": f"{tlabels}",
                # "predicted_labels": f"{plabels}",
                "time_taken_from_start": end_time - self.start_time
            }
            with open("result.txt", 'w') as file:
                for key, value in final_msg.items():
                    file.write(f"{key}: {value}\n")
            with open("plabels.txt","w") as file:
                file.write(plabels)          
            print(final_msg)
            fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
            f.close()
            with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1:
                sys.stdout = f1
                final_msg = {
                
                "confusion_matrix": f"{cmatrix}",
                "true_labels": f"{tlabels if epoch == 0 else ''}",
                "predicted_labels": f"{plabels}",
                "probabilities": f"{probabs}",
                "time_taken_from_start": end_time - self.start_time
                }
                print(final_msg)
                f1.close()
            sys.stdout = sys.__stdout__
        sys.stdout = sys.__stdout__
        

    
def train():
    parser = argparse.ArgumentParser()

    parser.add_argument('-workspace_name', type=str, default=None)
    parser.add_argument('-code', type=str, default=None, help="folder for pretraining outputs and logs")
    parser.add_argument('-finetune_task', type=str, default=None, help="folder inside finetuning")
    parser.add_argument("-attention", type=bool, default=False, help="analyse attention scores")
    parser.add_argument("-diff_test_folder", type=bool, default=False, help="use for different test folder")
    parser.add_argument("-embeddings", type=bool, default=False, help="get and analyse embeddings")
    parser.add_argument('-embeddings_file_name', type=str, default=None, help="file name of embeddings")
    parser.add_argument("-pretrain", type=bool, default=False, help="pretraining: true, or false")
    # parser.add_argument('-opts', nargs='+', type=str, default=None, help='List of optional steps')
    parser.add_argument("-max_mask", type=int, default=0.15, help="% of input tokens selected for masking") 
    # parser.add_argument("-p", "--pretrain_dataset", type=str, default="pretraining/pretrain.txt", help="pretraining dataset for bert")
    # parser.add_argument("-pv", "--pretrain_val_dataset", type=str, default="pretraining/test.txt", help="pretraining validation dataset for bert")
# default="finetuning/test.txt",
    parser.add_argument("-vocab_path", type=str, default="pretraining/vocab.txt", help="built vocab model path with bert-vocab")

    parser.add_argument("-train_dataset_path", type=str, default="train.txt", help="fine tune train dataset for progress classifier")
    parser.add_argument("-val_dataset_path", type=str, default="val.txt", help="test set for evaluate fine tune train set")
    parser.add_argument("-test_dataset_path", type=str, default="test.txt", help="test set for evaluate fine tune train set")
    parser.add_argument("-num_labels", type=int, default=2, help="Number of labels") 
    parser.add_argument("-train_label_path", type=str, default="train_label.txt", help="fine tune train dataset for progress classifier")
    parser.add_argument("-val_label_path", type=str, default="val_label.txt", help="test set for evaluate fine tune train set")
    parser.add_argument("-test_label_path", type=str, default="test_label.txt", help="test set for evaluate fine tune train set")
    ##### change Checkpoint for finetuning
    parser.add_argument("-pretrained_bert_checkpoint", type=str, default=None, help="checkpoint of saved pretrained bert model") 
    parser.add_argument("-finetuned_bert_classifier_checkpoint", type=str, default=None, help="checkpoint of saved finetuned bert model")  #."output_feb09/bert_trained.model.ep40"
    #."output_feb09/bert_trained.model.ep40"
    parser.add_argument('-check_epoch', type=int, default=None)

    parser.add_argument("-hs", "--hidden", type=int, default=64, help="hidden size of transformer model") #64
    parser.add_argument("-l", "--layers", type=int, default=4, help="number of layers") #4
    parser.add_argument("-a", "--attn_heads", type=int, default=4, help="number of attention heads") #8
    parser.add_argument("-s", "--seq_len", type=int, default=128, help="maximum sequence length")

    parser.add_argument("-b", "--batch_size", type=int, default=500, help="number of batch_size") #64
    parser.add_argument("-e", "--epochs", type=int, default=1)#1501, help="number of epochs") #501
    # Use 50 for pretrain, and 10 for fine tune
    parser.add_argument("-w", "--num_workers", type=int, default=0, help="dataloader worker size")

    # Later run with cuda
    parser.add_argument("--with_cuda", type=bool, default=False, help="training with CUDA: true, or false")
    parser.add_argument("--log_freq", type=int, default=10, help="printing loss every n iter: setting n")
    # parser.add_argument("--corpus_lines", type=int, default=None, help="total number of lines in corpus")
    parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device ids")
    # parser.add_argument("--on_memory", type=bool, default=False, help="Loading on memory: true or false")
    
    parser.add_argument("--dropout", type=float, default=0.1, help="dropout of network")
    parser.add_argument("--lr", type=float, default=1e-05, help="learning rate of adam") #1e-3
    parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight_decay of adam")
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="adam first beta value")
    parser.add_argument("--adam_beta2", type=float, default=0.98, help="adam first beta value") #0.999

    parser.add_argument("-o", "--output_path", type=str, default="bert_trained.seq_encoder.model", help="ex)output/bert.model")    
    # parser.add_argument("-o", "--output_path", type=str, default="output/bert_fine_tuned.model", help="ex)output/bert.model")
    
    args = parser.parse_args()
    for k,v in vars(args).items():
        if 'path' in k:
            if v:
                if k == "output_path":
                    if args.code:
                        setattr(args, f"{k}", args.workspace_name+f"/output/{args.code}/"+v)
                    elif args.finetune_task:
                        setattr(args, f"{k}", args.workspace_name+f"/output/{args.finetune_task}/"+v)
                    else:
                        setattr(args, f"{k}", args.workspace_name+"/output/"+v)
                elif k != "vocab_path":
                    if args.pretrain:
                        setattr(args, f"{k}", args.workspace_name+"/pretraining/"+v)
                    else:
                        if args.code:
                            setattr(args, f"{k}", args.workspace_name+f"/{args.code}/"+v)
                        elif args.finetune_task:
                            if args.diff_test_folder and "test" in k:
                                setattr(args, f"{k}", args.workspace_name+f"/finetuning/"+v)
                            else:
                                setattr(args, f"{k}", args.workspace_name+f"/finetuning/{args.finetune_task}/"+v)
                        else:
                            setattr(args, f"{k}", args.workspace_name+"/finetuning/"+v)
                else:
                    setattr(args, f"{k}", args.workspace_name+"/"+v)
                
                print(f"args.{k} : {getattr(args, f'{k}')}")

    print("Loading Vocab", args.vocab_path)
    vocab_obj = Vocab(args.vocab_path)
    vocab_obj.load_vocab()
    print("Vocab Size: ", len(vocab_obj.vocab))
    
    
    print("Testing using finetuned model......")
    print("Loading Test Dataset", args.test_dataset_path)            
    test_dataset = TokenizerDataset(args.test_dataset_path, args.test_label_path, vocab_obj, seq_len=args.seq_len)
    # test_dataset = TokenizerDatasetForCalibration(args.test_dataset_path, args.test_label_path, vocab_obj, seq_len=args.seq_len)

    print("Creating Dataloader...")
    test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers)

    print("Load fine-tuned BERT classifier model with feats")
    # cuda_condition = torch.cuda.is_available() and args.with_cuda
    device = torch.device("cpu") #torch.device("cuda:0" if cuda_condition else "cpu")
    finetunedBERTclassifier = torch.load(args.finetuned_bert_classifier_checkpoint, map_location=device)
    if isinstance(finetunedBERTclassifier, torch.nn.DataParallel):
        finetunedBERTclassifier = finetunedBERTclassifier.module
    
    new_log_folder = f"{args.workspace_name}/logs"
    new_output_folder = f"{args.workspace_name}/output"
    if args.finetune_task: # is sent almost all the time
        new_log_folder = f"{args.workspace_name}/logs/{args.finetune_task}"
        new_output_folder = f"{args.workspace_name}/output/{args.finetune_task}"

    if not os.path.exists(new_log_folder):
        os.makedirs(new_log_folder)
    if not os.path.exists(new_output_folder):
        os.makedirs(new_output_folder)

    print("Creating BERT Fine Tuned Test Trainer")
    trainer = BERTFineTuneTrainer(finetunedBERTclassifier, 
                    len(vocab_obj.vocab), test_dataloader=test_data_loader, 
                  lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, 
                  with_cuda=args.with_cuda, cuda_devices = args.cuda_devices, log_freq=args.log_freq, 
                  workspace_name = args.workspace_name, num_labels=args.num_labels, log_folder_path=new_log_folder)

    # trainer = BERTFineTuneCalibratedTrainer(finetunedBERTclassifier, 
    #                 len(vocab_obj.vocab), test_dataloader=test_data_loader, 
    #               lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, 
    #               with_cuda=args.with_cuda, cuda_devices = args.cuda_devices, log_freq=args.log_freq, 
    #               workspace_name = args.workspace_name, num_labels=args.num_labels, log_folder_path=new_log_folder)
    print("Testing fine-tuned model Start....")
    start_time = time.time()
    repoch = range(args.check_epoch, args.epochs) if args.check_epoch else range(args.epochs)
    counter = 0
    # patience = 10
    for epoch in repoch:
            print(f'Test Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}')
            trainer.test(epoch)
            # pickle.dump(trainer.probability_list, open(f"{args.workspace_name}/output/aaai/change4_mid_prob_{epoch}.pkl","wb"))
            print(f'Test Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n')
    end_time = time.time()
    print("Time Taken to fine-tune model = ", end_time - start_time)
    print(f'Pretraining Ends, Time: {time.strftime("%D %T", time.localtime(end_time))}')
    
    
    
if __name__ == "__main__":
    train()