Spaces:
Running
Running
added the high and low roc value
Browse files- .ipynb_checkpoints/Untitled-checkpoint.ipynb +0 -0
- .ipynb_checkpoints/distinguish_high_low_label-checkpoint.ipynb +447 -0
- Untitled.ipynb +2 -2
- app.py +82 -30
- distinguish_high_low_label.ipynb +451 -0
- new_test_saved_finetuned_model.py +5 -2
- result.txt +1 -1
- roc_data2.pkl +3 -0
.ipynb_checkpoints/Untitled-checkpoint.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.ipynb_checkpoints/distinguish_high_low_label-checkpoint.ipynb
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"id": "960bac80-51c7-4e9f-ad2d-84cd6c710f98",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pickle\n",
|
11 |
+
"import pandas as pd"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 4,
|
17 |
+
"id": "a34f21d0-0854-4a54-8f93-67718b2f969e",
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"file_path = \"roc_data2.pkl\"\n",
|
22 |
+
"\n",
|
23 |
+
"# Open and load the pickle file\n",
|
24 |
+
"with open(file_path, 'rb') as file:\n",
|
25 |
+
" data = pickle.load(file)\n",
|
26 |
+
"\n",
|
27 |
+
"\n",
|
28 |
+
"# Print or use the data\n",
|
29 |
+
"# data[2]"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": 5,
|
35 |
+
"id": "f9febed4-ce50-4e30-96ea-4b538ce2f9a1",
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"inc_slider=1\n",
|
40 |
+
"parent_location=\"ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/\"\n",
|
41 |
+
"test_info_location=parent_location+\"fullTest/test_info.txt\"\n",
|
42 |
+
"test_location=parent_location+\"fullTest/test.txt\"\n",
|
43 |
+
"test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')\n",
|
44 |
+
"grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate']) # Load the grad_rate data\n",
|
45 |
+
"\n",
|
46 |
+
"# Step 1: Extract unique school numbers from test_info\n",
|
47 |
+
"unique_schools = test_info[0].unique()\n",
|
48 |
+
"\n",
|
49 |
+
"# Step 2: Filter the grad_rate_data using the unique school numbers\n",
|
50 |
+
"schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)]\n",
|
51 |
+
"\n",
|
52 |
+
"# Define a threshold for high and low graduation rates (adjust as needed)\n",
|
53 |
+
"grad_rate_threshold = 0.9 \n",
|
54 |
+
"\n",
|
55 |
+
"# Step 4: Divide schools into high and low graduation rate groups\n",
|
56 |
+
"high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique()\n",
|
57 |
+
"low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique()\n",
|
58 |
+
"\n",
|
59 |
+
"# Step 5: Sample percentage of schools from each group\n",
|
60 |
+
"high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()\n",
|
61 |
+
"low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()\n",
|
62 |
+
"\n",
|
63 |
+
"# Step 6: Combine the sampled schools\n",
|
64 |
+
"random_schools = high_sample + low_sample\n",
|
65 |
+
"\n",
|
66 |
+
"# Step 7: Get indices for the sampled schools\n",
|
67 |
+
"indices = test_info[test_info[0].isin(random_schools)].index.tolist()\n",
|
68 |
+
"\n"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 6,
|
74 |
+
"id": "fdfdf4b6-2752-4a21-9880-869af69f20cf",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [],
|
77 |
+
"source": [
|
78 |
+
"high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()\n",
|
79 |
+
"low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": 7,
|
85 |
+
"id": "a79a4598-5702-4cc8-9f07-8e18fdda648b",
|
86 |
+
"metadata": {},
|
87 |
+
"outputs": [
|
88 |
+
{
|
89 |
+
"data": {
|
90 |
+
"text/plain": [
|
91 |
+
"997"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
"execution_count": 7,
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "execute_result"
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"len(high_indices)+len(low_indices)\n"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 8,
|
106 |
+
"id": "4707f3e6-2f44-46d8-ad8c-b6c244f693af",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [
|
109 |
+
{
|
110 |
+
"data": {
|
111 |
+
"text/html": [
|
112 |
+
"<div>\n",
|
113 |
+
"<style scoped>\n",
|
114 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
115 |
+
" vertical-align: middle;\n",
|
116 |
+
" }\n",
|
117 |
+
"\n",
|
118 |
+
" .dataframe tbody tr th {\n",
|
119 |
+
" vertical-align: top;\n",
|
120 |
+
" }\n",
|
121 |
+
"\n",
|
122 |
+
" .dataframe thead th {\n",
|
123 |
+
" text-align: right;\n",
|
124 |
+
" }\n",
|
125 |
+
"</style>\n",
|
126 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
127 |
+
" <thead>\n",
|
128 |
+
" <tr style=\"text-align: right;\">\n",
|
129 |
+
" <th></th>\n",
|
130 |
+
" <th>0</th>\n",
|
131 |
+
" </tr>\n",
|
132 |
+
" </thead>\n",
|
133 |
+
" <tbody>\n",
|
134 |
+
" <tr>\n",
|
135 |
+
" <th>5342</th>\n",
|
136 |
+
" <td>PercentChange-0\\tNumeratorQuantity1-0\\tNumerat...</td>\n",
|
137 |
+
" </tr>\n",
|
138 |
+
" <tr>\n",
|
139 |
+
" <th>5343</th>\n",
|
140 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
141 |
+
" </tr>\n",
|
142 |
+
" <tr>\n",
|
143 |
+
" <th>5344</th>\n",
|
144 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
145 |
+
" </tr>\n",
|
146 |
+
" <tr>\n",
|
147 |
+
" <th>5345</th>\n",
|
148 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...</td>\n",
|
149 |
+
" </tr>\n",
|
150 |
+
" <tr>\n",
|
151 |
+
" <th>5346</th>\n",
|
152 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tDenomin...</td>\n",
|
153 |
+
" </tr>\n",
|
154 |
+
" <tr>\n",
|
155 |
+
" <th>...</th>\n",
|
156 |
+
" <td>...</td>\n",
|
157 |
+
" </tr>\n",
|
158 |
+
" <tr>\n",
|
159 |
+
" <th>113359</th>\n",
|
160 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...</td>\n",
|
161 |
+
" </tr>\n",
|
162 |
+
" <tr>\n",
|
163 |
+
" <th>113360</th>\n",
|
164 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
165 |
+
" </tr>\n",
|
166 |
+
" <tr>\n",
|
167 |
+
" <th>113361</th>\n",
|
168 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
169 |
+
" </tr>\n",
|
170 |
+
" <tr>\n",
|
171 |
+
" <th>113362</th>\n",
|
172 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
173 |
+
" </tr>\n",
|
174 |
+
" <tr>\n",
|
175 |
+
" <th>113363</th>\n",
|
176 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
177 |
+
" </tr>\n",
|
178 |
+
" </tbody>\n",
|
179 |
+
"</table>\n",
|
180 |
+
"<p>997 rows × 1 columns</p>\n",
|
181 |
+
"</div>"
|
182 |
+
],
|
183 |
+
"text/plain": [
|
184 |
+
" 0\n",
|
185 |
+
"5342 PercentChange-0\\tNumeratorQuantity1-0\\tNumerat...\n",
|
186 |
+
"5343 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
187 |
+
"5344 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
188 |
+
"5345 PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...\n",
|
189 |
+
"5346 PercentChange-0\\tNumeratorQuantity2-0\\tDenomin...\n",
|
190 |
+
"... ...\n",
|
191 |
+
"113359 PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...\n",
|
192 |
+
"113360 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
193 |
+
"113361 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
194 |
+
"113362 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
195 |
+
"113363 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
196 |
+
"\n",
|
197 |
+
"[997 rows x 1 columns]"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
"execution_count": 8,
|
201 |
+
"metadata": {},
|
202 |
+
"output_type": "execute_result"
|
203 |
+
}
|
204 |
+
],
|
205 |
+
"source": [
|
206 |
+
"# Load the test file and select rows based on indices\n",
|
207 |
+
"test = pd.read_csv(test_location, sep=',', header=None, engine='python')\n",
|
208 |
+
"selected_rows_df2 = test.loc[indices]\n",
|
209 |
+
"selected_rows_df2"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
"execution_count": 11,
|
215 |
+
"id": "1d0c3d49-061f-486b-9c19-cf20945f3207",
|
216 |
+
"metadata": {},
|
217 |
+
"outputs": [],
|
218 |
+
"source": [
|
219 |
+
"graduation_groups = [\n",
|
220 |
+
" 'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index\n",
|
221 |
+
"]\n",
|
222 |
+
"# graduation_groups"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"execution_count": 43,
|
228 |
+
"id": "ad0ce4a1-27fa-4867-8061-4054dbb340df",
|
229 |
+
"metadata": {},
|
230 |
+
"outputs": [],
|
231 |
+
"source": [
|
232 |
+
"t_label=data[0]\n",
|
233 |
+
"p_label=data[1]"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"execution_count": 47,
|
239 |
+
"id": "a4f4a2b9-3134-42ac-871b-4e117098cd0e",
|
240 |
+
"metadata": {},
|
241 |
+
"outputs": [],
|
242 |
+
"source": [
|
243 |
+
"# Step 1: Align graduation_group, t_label, and p_label\n",
|
244 |
+
"aligned_labels = list(zip(graduation_groups, t_label, p_label))\n",
|
245 |
+
"\n",
|
246 |
+
"# Step 2: Separate the labels for high and low groups\n",
|
247 |
+
"high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']\n",
|
248 |
+
"low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']\n",
|
249 |
+
"\n",
|
250 |
+
"high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']\n",
|
251 |
+
"low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']\n",
|
252 |
+
"\n"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": 50,
|
258 |
+
"id": "c8e34660-83d0-46a1-a218-95d609e11729",
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [
|
261 |
+
{
|
262 |
+
"data": {
|
263 |
+
"text/plain": [
|
264 |
+
"997"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
"execution_count": 50,
|
268 |
+
"metadata": {},
|
269 |
+
"output_type": "execute_result"
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"source": [
|
273 |
+
"len(low_t_labels)+len(high_t_labels)"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"execution_count": 51,
|
279 |
+
"id": "c11050db-2636-4c50-9cd4-b9943e5cee83",
|
280 |
+
"metadata": {},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, roc_curve, roc_auc_score"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "code",
|
288 |
+
"execution_count": 52,
|
289 |
+
"id": "e1309e93-7063-4f48-bbc7-11a0d449c34e",
|
290 |
+
"metadata": {},
|
291 |
+
"outputs": [
|
292 |
+
{
|
293 |
+
"name": "stdout",
|
294 |
+
"output_type": "stream",
|
295 |
+
"text": [
|
296 |
+
"ROC-AUC Score for High Graduation Rate Group: 0.675\n",
|
297 |
+
"ROC-AUC Score for Low Graduation Rate Group: 0.7489795918367347\n"
|
298 |
+
]
|
299 |
+
}
|
300 |
+
],
|
301 |
+
"source": [
|
302 |
+
"high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None\n",
|
303 |
+
"low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None\n",
|
304 |
+
"\n",
|
305 |
+
"print(\"ROC-AUC Score for High Graduation Rate Group:\", high_roc_auc)\n",
|
306 |
+
"print(\"ROC-AUC Score for Low Graduation Rate Group:\", low_roc_auc)"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "code",
|
311 |
+
"execution_count": 4,
|
312 |
+
"id": "a99e7812-817d-4f9f-b6fa-1a58aa3a34dc",
|
313 |
+
"metadata": {},
|
314 |
+
"outputs": [
|
315 |
+
{
|
316 |
+
"ename": "TypeError",
|
317 |
+
"evalue": "cannot convert the series to <class 'int'>",
|
318 |
+
"output_type": "error",
|
319 |
+
"traceback": [
|
320 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
321 |
+
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
|
322 |
+
"Cell \u001b[1;32mIn[4], line 47\u001b[0m\n\u001b[0;32m 44\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(test_info_location, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mas\u001b[39;00m file:\n\u001b[0;32m 45\u001b[0m data \u001b[38;5;241m=\u001b[39m file\u001b[38;5;241m.\u001b[39mreadlines()\n\u001b[1;32m---> 47\u001b[0m ideal_opt_task \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mint\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mtest_info\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m7\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# Assuming test_info[7] is accessible and holds the ideal task (1 or 2)\u001b[39;00m\n\u001b[0;32m 49\u001b[0m \u001b[38;5;66;03m# Initialize counters\u001b[39;00m\n\u001b[0;32m 50\u001b[0m task_counts \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m 51\u001b[0m \u001b[38;5;241m1\u001b[39m: {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monly_opt1\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monly_opt2\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mboth\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m},\n\u001b[0;32m 52\u001b[0m \u001b[38;5;241m2\u001b[39m: {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monly_opt1\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monly_opt2\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mboth\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m}\n\u001b[0;32m 53\u001b[0m }\n",
|
323 |
+
"File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\pandas\\core\\series.py:230\u001b[0m, in \u001b[0;36m_coerce_method.<locals>.wrapper\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 222\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[0;32m 223\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCalling \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mconverter\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m on a single element Series is \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 224\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdeprecated and will raise a TypeError in the future. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 227\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[0;32m 228\u001b[0m )\n\u001b[0;32m 229\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m converter(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miloc[\u001b[38;5;241m0\u001b[39m])\n\u001b[1;32m--> 230\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcannot convert the series to \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mconverter\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
|
324 |
+
"\u001b[1;31mTypeError\u001b[0m: cannot convert the series to <class 'int'>"
|
325 |
+
]
|
326 |
+
}
|
327 |
+
],
|
328 |
+
"source": [
|
329 |
+
"parent_location=\"ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/\"\n",
|
330 |
+
"test_info_location=parent_location+\"fullTest/test_info.txt\"\n",
|
331 |
+
"test_location=parent_location+\"fullTest/test.txt\"\n",
|
332 |
+
"test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')\n",
|
333 |
+
"\n",
|
334 |
+
"def analyze_row(row, ideal_opt_task):\n",
|
335 |
+
" # Split the row into fields\n",
|
336 |
+
" fields = row.split(\"\\t\")\n",
|
337 |
+
"\n",
|
338 |
+
" # Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer\n",
|
339 |
+
" optional_task_1_subtasks = [\"DenominatorFactor\", \"NumeratorFactor\", \"EquationAnswer\"]\n",
|
340 |
+
" optional_task_2_subtasks = [\n",
|
341 |
+
" \"FirstRow2:1\", \"FirstRow2:2\", \"FirstRow1:1\", \"FirstRow1:2\", \n",
|
342 |
+
" \"SecondRow\", \"ThirdRow\"\n",
|
343 |
+
" ]\n",
|
344 |
+
" final_answer_tasks = [\"FinalAnswer\"]\n",
|
345 |
+
"\n",
|
346 |
+
" # Helper function to evaluate task attempts\n",
|
347 |
+
" def evaluate_tasks(fields, tasks):\n",
|
348 |
+
" task_status = {}\n",
|
349 |
+
" for task in tasks:\n",
|
350 |
+
" relevant_attempts = [f for f in fields if task in f]\n",
|
351 |
+
" if any(\"OK\" in attempt for attempt in relevant_attempts):\n",
|
352 |
+
" task_status[task] = \"Attempted (Successful)\"\n",
|
353 |
+
" elif any(\"ERROR\" in attempt for attempt in relevant_attempts):\n",
|
354 |
+
" task_status[task] = \"Attempted (Error)\"\n",
|
355 |
+
" elif any(\"JIT\" in attempt for attempt in relevant_attempts):\n",
|
356 |
+
" task_status[task] = \"Attempted (JIT)\"\n",
|
357 |
+
" else:\n",
|
358 |
+
" task_status[task] = \"Unattempted\"\n",
|
359 |
+
" return task_status\n",
|
360 |
+
"\n",
|
361 |
+
" # Evaluate tasks for each category\n",
|
362 |
+
" optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)\n",
|
363 |
+
" optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)\n",
|
364 |
+
"\n",
|
365 |
+
" # Check if tasks have any successful attempt\n",
|
366 |
+
" opt1_done = any(status == \"Attempted (Successful)\" for status in optional_task_1_status.values())\n",
|
367 |
+
" opt2_done = any(status == \"Attempted (Successful)\" for status in optional_task_2_status.values())\n",
|
368 |
+
"\n",
|
369 |
+
" return opt1_done, opt2_done\n",
|
370 |
+
"\n",
|
371 |
+
"# Read data from test_info.txt\n",
|
372 |
+
"with open(test_info_location, \"r\") as file:\n",
|
373 |
+
" data = file.readlines()\n",
|
374 |
+
"\n",
|
375 |
+
"ideal_opt_task = int(test_info[6]) # Assuming test_info[7] is accessible and holds the ideal task (1 or 2)\n",
|
376 |
+
"\n",
|
377 |
+
"# Initialize counters\n",
|
378 |
+
"task_counts = {\n",
|
379 |
+
" 1: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0},\n",
|
380 |
+
" 2: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0}\n",
|
381 |
+
"}\n",
|
382 |
+
"\n",
|
383 |
+
"for row in data:\n",
|
384 |
+
" row = row.strip()\n",
|
385 |
+
" if not row:\n",
|
386 |
+
" continue\n",
|
387 |
+
" opt1_done, opt2_done = analyze_row(row, ideal_opt_task)\n",
|
388 |
+
"\n",
|
389 |
+
" if ideal_opt_task == 0:\n",
|
390 |
+
" if opt1_done and not opt2_done:\n",
|
391 |
+
" task_counts[1][\"only_opt1\"] += 1\n",
|
392 |
+
" elif not opt1_done and opt2_done:\n",
|
393 |
+
" task_counts[1][\"only_opt2\"] += 1\n",
|
394 |
+
" elif opt1_done and opt2_done:\n",
|
395 |
+
" task_counts[1][\"both\"] += 1\n",
|
396 |
+
" elif ideal_opt_task == 1:\n",
|
397 |
+
" if opt1_done and not opt2_done:\n",
|
398 |
+
" task_counts[2][\"only_opt1\"] += 1\n",
|
399 |
+
" elif not opt1_done and opt2_done:\n",
|
400 |
+
" task_counts[2][\"only_opt2\"] += 1\n",
|
401 |
+
" elif opt1_done and opt2_done:\n",
|
402 |
+
" task_counts[2][\"both\"] += 1\n",
|
403 |
+
"\n",
|
404 |
+
"# Create a string output for results\n",
|
405 |
+
"output_summary = \"Task Analysis Summary:\\n\"\n",
|
406 |
+
"output_summary += \"-----------------------\\n\"\n",
|
407 |
+
"\n",
|
408 |
+
"for ideal_task, counts in task_counts.items():\n",
|
409 |
+
" output_summary += f\"Ideal Task = OptionalTask_{ideal_task}:\\n\"\n",
|
410 |
+
" output_summary += f\" Only OptionalTask_1 done: {counts['only_opt1']}\\n\"\n",
|
411 |
+
" output_summary += f\" Only OptionalTask_2 done: {counts['only_opt2']}\\n\"\n",
|
412 |
+
" output_summary += f\" Both done: {counts['both']}\\n\"\n",
|
413 |
+
"\n",
|
414 |
+
"print(output_summary)"
|
415 |
+
]
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"cell_type": "code",
|
419 |
+
"execution_count": null,
|
420 |
+
"id": "65ad9383-741f-44eb-8e8f-853ee7bc52a2",
|
421 |
+
"metadata": {},
|
422 |
+
"outputs": [],
|
423 |
+
"source": []
|
424 |
+
}
|
425 |
+
],
|
426 |
+
"metadata": {
|
427 |
+
"kernelspec": {
|
428 |
+
"display_name": "Python 3 (ipykernel)",
|
429 |
+
"language": "python",
|
430 |
+
"name": "python3"
|
431 |
+
},
|
432 |
+
"language_info": {
|
433 |
+
"codemirror_mode": {
|
434 |
+
"name": "ipython",
|
435 |
+
"version": 3
|
436 |
+
},
|
437 |
+
"file_extension": ".py",
|
438 |
+
"mimetype": "text/x-python",
|
439 |
+
"name": "python",
|
440 |
+
"nbconvert_exporter": "python",
|
441 |
+
"pygments_lexer": "ipython3",
|
442 |
+
"version": "3.12.4"
|
443 |
+
}
|
444 |
+
},
|
445 |
+
"nbformat": 4,
|
446 |
+
"nbformat_minor": 5
|
447 |
+
}
|
Untitled.ipynb
CHANGED
@@ -623,7 +623,7 @@
|
|
623 |
"uri": "us-docker.pkg.dev/deeplearning-platform-release/gcr.io/base-cu113:m122"
|
624 |
},
|
625 |
"kernelspec": {
|
626 |
-
"display_name": "Python 3",
|
627 |
"language": "python",
|
628 |
"name": "python3"
|
629 |
},
|
@@ -637,7 +637,7 @@
|
|
637 |
"name": "python",
|
638 |
"nbconvert_exporter": "python",
|
639 |
"pygments_lexer": "ipython3",
|
640 |
-
"version": "3.
|
641 |
}
|
642 |
},
|
643 |
"nbformat": 4,
|
|
|
623 |
"uri": "us-docker.pkg.dev/deeplearning-platform-release/gcr.io/base-cu113:m122"
|
624 |
},
|
625 |
"kernelspec": {
|
626 |
+
"display_name": "Python 3 (ipykernel)",
|
627 |
"language": "python",
|
628 |
"name": "python3"
|
629 |
},
|
|
|
637 |
"name": "python",
|
638 |
"nbconvert_exporter": "python",
|
639 |
"pygments_lexer": "ipython3",
|
640 |
+
"version": "3.12.4"
|
641 |
}
|
642 |
},
|
643 |
"nbformat": 4,
|
app.py
CHANGED
@@ -8,6 +8,7 @@ import shutil
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
from sklearn.metrics import roc_curve, auc
|
10 |
import pandas as pd
|
|
|
11 |
# Define the function to process the input file and model selection
|
12 |
|
13 |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
@@ -66,6 +67,8 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
66 |
|
67 |
# Step 7: Get indices for the sampled schools
|
68 |
indices = test_info[test_info[0].isin(random_schools)].index.tolist()
|
|
|
|
|
69 |
|
70 |
# Load the test file and select rows based on indices
|
71 |
test = pd.read_csv(test_location, sep=',', header=None, engine='python')
|
@@ -74,7 +77,27 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
74 |
# Save the selected rows to a file
|
75 |
selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
# For demonstration purposes, we'll just return the content with the selected model name
|
79 |
|
80 |
# print(checkpoint)
|
@@ -87,7 +110,7 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
87 |
# model_name="highGRschool10"
|
88 |
# Function to analyze each row
|
89 |
def analyze_row(row):
|
90 |
-
|
91 |
fields = row.split("\t")
|
92 |
|
93 |
# Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer
|
@@ -96,14 +119,12 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
96 |
"FirstRow2:1", "FirstRow2:2", "FirstRow1:1", "FirstRow1:2",
|
97 |
"SecondRow", "ThirdRow"
|
98 |
]
|
99 |
-
final_answer_tasks = ["FinalAnswer"]
|
100 |
|
101 |
# Helper function to evaluate task attempts
|
102 |
def evaluate_tasks(fields, tasks):
|
103 |
task_status = {}
|
104 |
for task in tasks:
|
105 |
relevant_attempts = [f for f in fields if task in f]
|
106 |
-
# print(relevant_attempts)
|
107 |
if any("OK" in attempt for attempt in relevant_attempts):
|
108 |
task_status[task] = "Attempted (Successful)"
|
109 |
elif any("ERROR" in attempt for attempt in relevant_attempts):
|
@@ -117,40 +138,62 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
117 |
# Evaluate tasks for each category
|
118 |
optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)
|
119 |
optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
return result
|
129 |
# Read data from test_info.txt
|
130 |
with open(test_info_location, "r") as file:
|
131 |
data = file.readlines()
|
132 |
-
results = [analyze_row(row.strip()) for row in data if row.strip()]
|
133 |
|
134 |
-
|
|
|
135 |
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
# Create a string output for results
|
146 |
output_summary = "Task Analysis Summary:\n"
|
147 |
output_summary += "-----------------------\n"
|
148 |
|
149 |
-
for
|
150 |
-
output_summary += f"Task
|
151 |
-
|
152 |
-
|
|
|
153 |
|
|
|
154 |
|
155 |
progress(0.2, desc="analysis done!! Executing models")
|
156 |
print("finetuned task: ",finetune_task)
|
@@ -175,10 +218,12 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
175 |
result[key]=value
|
176 |
else:
|
177 |
result[key]=float(value)
|
|
|
|
|
178 |
# Create a plot
|
179 |
with open("roc_data.pkl", "rb") as f:
|
180 |
fpr, tpr, _ = pickle.load(f)
|
181 |
-
|
182 |
roc_auc = auc(fpr, tpr)
|
183 |
fig, ax = plt.subplots()
|
184 |
ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
|
@@ -191,6 +236,10 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
191 |
plot_path = "plot.png"
|
192 |
fig.savefig(plot_path)
|
193 |
plt.close(fig)
|
|
|
|
|
|
|
|
|
194 |
progress(1.0)
|
195 |
# Prepare text output
|
196 |
text_output = f"Model: {model_name}\nResult:\n{result}"
|
@@ -203,9 +252,12 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
203 |
Total Schools in test: {len(unique_schools):.4f}\n
|
204 |
Total number of instances having Schools with HGR : {len(high_sample):.4f}\n
|
205 |
Total number of instances having Schools with LGR: {len(low_sample):.4f}\n
|
|
|
|
|
|
|
206 |
-----------------\n
|
207 |
"""
|
208 |
-
return text_output,plot_path
|
209 |
|
210 |
# List of models for the dropdown menu
|
211 |
|
@@ -456,11 +508,11 @@ tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) {
|
|
456 |
with gr.Row():
|
457 |
output_text = gr.Textbox(label="")
|
458 |
output_image = gr.Image(label="ROC")
|
459 |
-
|
460 |
|
461 |
btn = gr.Button("Submit")
|
462 |
|
463 |
-
btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,output_image])
|
464 |
|
465 |
|
466 |
# Launch the app
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
from sklearn.metrics import roc_curve, auc
|
10 |
import pandas as pd
|
11 |
+
from sklearn.metrics import roc_auc_score
|
12 |
# Define the function to process the input file and model selection
|
13 |
|
14 |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
|
67 |
|
68 |
# Step 7: Get indices for the sampled schools
|
69 |
indices = test_info[test_info[0].isin(random_schools)].index.tolist()
|
70 |
+
high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()
|
71 |
+
low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()
|
72 |
|
73 |
# Load the test file and select rows based on indices
|
74 |
test = pd.read_csv(test_location, sep=',', header=None, engine='python')
|
|
|
77 |
# Save the selected rows to a file
|
78 |
selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
|
79 |
|
80 |
+
graduation_groups = [
|
81 |
+
'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index
|
82 |
+
]
|
83 |
+
|
84 |
+
|
85 |
+
with open("roc_data2.pkl", 'rb') as file:
|
86 |
+
data = pickle.load(file)
|
87 |
+
t_label=data[0]
|
88 |
+
p_label=data[1]
|
89 |
+
# Step 1: Align graduation_group, t_label, and p_label
|
90 |
+
aligned_labels = list(zip(graduation_groups, t_label, p_label))
|
91 |
+
|
92 |
+
# Step 2: Separate the labels for high and low groups
|
93 |
+
high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']
|
94 |
+
low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']
|
95 |
+
|
96 |
+
high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']
|
97 |
+
low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']
|
98 |
+
|
99 |
+
high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None
|
100 |
+
low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None
|
101 |
# For demonstration purposes, we'll just return the content with the selected model name
|
102 |
|
103 |
# print(checkpoint)
|
|
|
110 |
# model_name="highGRschool10"
|
111 |
# Function to analyze each row
|
112 |
def analyze_row(row):
|
113 |
+
# Split the row into fields
|
114 |
fields = row.split("\t")
|
115 |
|
116 |
# Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer
|
|
|
119 |
"FirstRow2:1", "FirstRow2:2", "FirstRow1:1", "FirstRow1:2",
|
120 |
"SecondRow", "ThirdRow"
|
121 |
]
|
|
|
122 |
|
123 |
# Helper function to evaluate task attempts
|
124 |
def evaluate_tasks(fields, tasks):
|
125 |
task_status = {}
|
126 |
for task in tasks:
|
127 |
relevant_attempts = [f for f in fields if task in f]
|
|
|
128 |
if any("OK" in attempt for attempt in relevant_attempts):
|
129 |
task_status[task] = "Attempted (Successful)"
|
130 |
elif any("ERROR" in attempt for attempt in relevant_attempts):
|
|
|
138 |
# Evaluate tasks for each category
|
139 |
optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)
|
140 |
optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)
|
141 |
+
|
142 |
+
# Check if tasks have any successful attempt
|
143 |
+
opt1_done = any(status == "Attempted (Successful)" for status in optional_task_1_status.values())
|
144 |
+
opt2_done = any(status == "Attempted (Successful)" for status in optional_task_2_status.values())
|
145 |
+
|
146 |
+
return opt1_done, opt2_done
|
147 |
+
|
148 |
+
# Read data from test_info.txt
|
|
|
149 |
# Read data from test_info.txt
|
150 |
with open(test_info_location, "r") as file:
|
151 |
data = file.readlines()
|
|
|
152 |
|
153 |
+
# Assuming test_info[7] is a list with ideal tasks for each instance
|
154 |
+
ideal_tasks = test_info[6] # A list where each element is either 1 or 2
|
155 |
|
156 |
+
# Initialize counters
|
157 |
+
task_counts = {
|
158 |
+
1: {"only_opt1": 0, "only_opt2": 0, "both": 0},
|
159 |
+
2: {"only_opt1": 0, "only_opt2": 0, "both": 0}
|
160 |
+
}
|
161 |
|
162 |
+
# Analyze rows
|
163 |
+
for i, row in enumerate(data):
|
164 |
+
row = row.strip()
|
165 |
+
if not row:
|
166 |
+
continue
|
167 |
+
|
168 |
+
ideal_task = ideal_tasks[i] # Get the ideal task for the current row
|
169 |
+
opt1_done, opt2_done = analyze_row(row)
|
170 |
+
|
171 |
+
if ideal_task == 0:
|
172 |
+
if opt1_done and not opt2_done:
|
173 |
+
task_counts[1]["only_opt1"] += 1
|
174 |
+
elif not opt1_done and opt2_done:
|
175 |
+
task_counts[1]["only_opt2"] += 1
|
176 |
+
elif opt1_done and opt2_done:
|
177 |
+
task_counts[1]["both"] += 1
|
178 |
+
elif ideal_task == 1:
|
179 |
+
if opt1_done and not opt2_done:
|
180 |
+
task_counts[2]["only_opt1"] += 1
|
181 |
+
elif not opt1_done and opt2_done:
|
182 |
+
task_counts[2]["only_opt2"] += 1
|
183 |
+
elif opt1_done and opt2_done:
|
184 |
+
task_counts[2]["both"] += 1
|
185 |
|
186 |
# Create a string output for results
|
187 |
output_summary = "Task Analysis Summary:\n"
|
188 |
output_summary += "-----------------------\n"
|
189 |
|
190 |
+
for ideal_task, counts in task_counts.items():
|
191 |
+
output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
|
192 |
+
output_summary += f" Only OptionalTask_1 done: {counts['only_opt1']}\n"
|
193 |
+
output_summary += f" Only OptionalTask_2 done: {counts['only_opt2']}\n"
|
194 |
+
output_summary += f" Both done: {counts['both']}\n"
|
195 |
|
196 |
+
# print(output_summary)
|
197 |
|
198 |
progress(0.2, desc="analysis done!! Executing models")
|
199 |
print("finetuned task: ",finetune_task)
|
|
|
218 |
result[key]=value
|
219 |
else:
|
220 |
result[key]=float(value)
|
221 |
+
result["ROC score of HGR"]=high_roc_auc
|
222 |
+
result["ROC score of LGR"]=low_roc_auc
|
223 |
# Create a plot
|
224 |
with open("roc_data.pkl", "rb") as f:
|
225 |
fpr, tpr, _ = pickle.load(f)
|
226 |
+
# print(fpr,tpr)
|
227 |
roc_auc = auc(fpr, tpr)
|
228 |
fig, ax = plt.subplots()
|
229 |
ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
|
|
|
236 |
plot_path = "plot.png"
|
237 |
fig.savefig(plot_path)
|
238 |
plt.close(fig)
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
progress(1.0)
|
244 |
# Prepare text output
|
245 |
text_output = f"Model: {model_name}\nResult:\n{result}"
|
|
|
252 |
Total Schools in test: {len(unique_schools):.4f}\n
|
253 |
Total number of instances having Schools with HGR : {len(high_sample):.4f}\n
|
254 |
Total number of instances having Schools with LGR: {len(low_sample):.4f}\n
|
255 |
+
|
256 |
+
ROC score of HGR: {high_roc_auc}\n
|
257 |
+
ROC score of LGR: {low_roc_auc}\n
|
258 |
-----------------\n
|
259 |
"""
|
260 |
+
return text_output,plot_path,output_summary
|
261 |
|
262 |
# List of models for the dropdown menu
|
263 |
|
|
|
508 |
with gr.Row():
|
509 |
output_text = gr.Textbox(label="")
|
510 |
output_image = gr.Image(label="ROC")
|
511 |
+
output_summary = gr.Textbox(label="Summary")
|
512 |
|
513 |
btn = gr.Button("Submit")
|
514 |
|
515 |
+
btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,output_image,output_summary])
|
516 |
|
517 |
|
518 |
# Launch the app
|
distinguish_high_low_label.ipynb
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"id": "960bac80-51c7-4e9f-ad2d-84cd6c710f98",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pickle\n",
|
11 |
+
"import pandas as pd"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 4,
|
17 |
+
"id": "a34f21d0-0854-4a54-8f93-67718b2f969e",
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"file_path = \"roc_data2.pkl\"\n",
|
22 |
+
"\n",
|
23 |
+
"# Open and load the pickle file\n",
|
24 |
+
"with open(file_path, 'rb') as file:\n",
|
25 |
+
" data = pickle.load(file)\n",
|
26 |
+
"\n",
|
27 |
+
"\n",
|
28 |
+
"# Print or use the data\n",
|
29 |
+
"# data[2]"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": 5,
|
35 |
+
"id": "f9febed4-ce50-4e30-96ea-4b538ce2f9a1",
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"inc_slider=1\n",
|
40 |
+
"parent_location=\"ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/\"\n",
|
41 |
+
"test_info_location=parent_location+\"fullTest/test_info.txt\"\n",
|
42 |
+
"test_location=parent_location+\"fullTest/test.txt\"\n",
|
43 |
+
"test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')\n",
|
44 |
+
"grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate']) # Load the grad_rate data\n",
|
45 |
+
"\n",
|
46 |
+
"# Step 1: Extract unique school numbers from test_info\n",
|
47 |
+
"unique_schools = test_info[0].unique()\n",
|
48 |
+
"\n",
|
49 |
+
"# Step 2: Filter the grad_rate_data using the unique school numbers\n",
|
50 |
+
"schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)]\n",
|
51 |
+
"\n",
|
52 |
+
"# Define a threshold for high and low graduation rates (adjust as needed)\n",
|
53 |
+
"grad_rate_threshold = 0.9 \n",
|
54 |
+
"\n",
|
55 |
+
"# Step 4: Divide schools into high and low graduation rate groups\n",
|
56 |
+
"high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique()\n",
|
57 |
+
"low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique()\n",
|
58 |
+
"\n",
|
59 |
+
"# Step 5: Sample percentage of schools from each group\n",
|
60 |
+
"high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()\n",
|
61 |
+
"low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()\n",
|
62 |
+
"\n",
|
63 |
+
"# Step 6: Combine the sampled schools\n",
|
64 |
+
"random_schools = high_sample + low_sample\n",
|
65 |
+
"\n",
|
66 |
+
"# Step 7: Get indices for the sampled schools\n",
|
67 |
+
"indices = test_info[test_info[0].isin(random_schools)].index.tolist()\n",
|
68 |
+
"\n"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 6,
|
74 |
+
"id": "fdfdf4b6-2752-4a21-9880-869af69f20cf",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [],
|
77 |
+
"source": [
|
78 |
+
"high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()\n",
|
79 |
+
"low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": 7,
|
85 |
+
"id": "a79a4598-5702-4cc8-9f07-8e18fdda648b",
|
86 |
+
"metadata": {},
|
87 |
+
"outputs": [
|
88 |
+
{
|
89 |
+
"data": {
|
90 |
+
"text/plain": [
|
91 |
+
"997"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
"execution_count": 7,
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "execute_result"
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"len(high_indices)+len(low_indices)\n"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 8,
|
106 |
+
"id": "4707f3e6-2f44-46d8-ad8c-b6c244f693af",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [
|
109 |
+
{
|
110 |
+
"data": {
|
111 |
+
"text/html": [
|
112 |
+
"<div>\n",
|
113 |
+
"<style scoped>\n",
|
114 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
115 |
+
" vertical-align: middle;\n",
|
116 |
+
" }\n",
|
117 |
+
"\n",
|
118 |
+
" .dataframe tbody tr th {\n",
|
119 |
+
" vertical-align: top;\n",
|
120 |
+
" }\n",
|
121 |
+
"\n",
|
122 |
+
" .dataframe thead th {\n",
|
123 |
+
" text-align: right;\n",
|
124 |
+
" }\n",
|
125 |
+
"</style>\n",
|
126 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
127 |
+
" <thead>\n",
|
128 |
+
" <tr style=\"text-align: right;\">\n",
|
129 |
+
" <th></th>\n",
|
130 |
+
" <th>0</th>\n",
|
131 |
+
" </tr>\n",
|
132 |
+
" </thead>\n",
|
133 |
+
" <tbody>\n",
|
134 |
+
" <tr>\n",
|
135 |
+
" <th>5342</th>\n",
|
136 |
+
" <td>PercentChange-0\\tNumeratorQuantity1-0\\tNumerat...</td>\n",
|
137 |
+
" </tr>\n",
|
138 |
+
" <tr>\n",
|
139 |
+
" <th>5343</th>\n",
|
140 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
141 |
+
" </tr>\n",
|
142 |
+
" <tr>\n",
|
143 |
+
" <th>5344</th>\n",
|
144 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
145 |
+
" </tr>\n",
|
146 |
+
" <tr>\n",
|
147 |
+
" <th>5345</th>\n",
|
148 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...</td>\n",
|
149 |
+
" </tr>\n",
|
150 |
+
" <tr>\n",
|
151 |
+
" <th>5346</th>\n",
|
152 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tDenomin...</td>\n",
|
153 |
+
" </tr>\n",
|
154 |
+
" <tr>\n",
|
155 |
+
" <th>...</th>\n",
|
156 |
+
" <td>...</td>\n",
|
157 |
+
" </tr>\n",
|
158 |
+
" <tr>\n",
|
159 |
+
" <th>113359</th>\n",
|
160 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...</td>\n",
|
161 |
+
" </tr>\n",
|
162 |
+
" <tr>\n",
|
163 |
+
" <th>113360</th>\n",
|
164 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
165 |
+
" </tr>\n",
|
166 |
+
" <tr>\n",
|
167 |
+
" <th>113361</th>\n",
|
168 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
169 |
+
" </tr>\n",
|
170 |
+
" <tr>\n",
|
171 |
+
" <th>113362</th>\n",
|
172 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
173 |
+
" </tr>\n",
|
174 |
+
" <tr>\n",
|
175 |
+
" <th>113363</th>\n",
|
176 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
177 |
+
" </tr>\n",
|
178 |
+
" </tbody>\n",
|
179 |
+
"</table>\n",
|
180 |
+
"<p>997 rows × 1 columns</p>\n",
|
181 |
+
"</div>"
|
182 |
+
],
|
183 |
+
"text/plain": [
|
184 |
+
" 0\n",
|
185 |
+
"5342 PercentChange-0\\tNumeratorQuantity1-0\\tNumerat...\n",
|
186 |
+
"5343 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
187 |
+
"5344 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
188 |
+
"5345 PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...\n",
|
189 |
+
"5346 PercentChange-0\\tNumeratorQuantity2-0\\tDenomin...\n",
|
190 |
+
"... ...\n",
|
191 |
+
"113359 PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...\n",
|
192 |
+
"113360 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
193 |
+
"113361 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
194 |
+
"113362 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
195 |
+
"113363 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
196 |
+
"\n",
|
197 |
+
"[997 rows x 1 columns]"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
"execution_count": 8,
|
201 |
+
"metadata": {},
|
202 |
+
"output_type": "execute_result"
|
203 |
+
}
|
204 |
+
],
|
205 |
+
"source": [
|
206 |
+
"# Load the test file and select rows based on indices\n",
|
207 |
+
"test = pd.read_csv(test_location, sep=',', header=None, engine='python')\n",
|
208 |
+
"selected_rows_df2 = test.loc[indices]\n",
|
209 |
+
"selected_rows_df2"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
"execution_count": 11,
|
215 |
+
"id": "1d0c3d49-061f-486b-9c19-cf20945f3207",
|
216 |
+
"metadata": {},
|
217 |
+
"outputs": [],
|
218 |
+
"source": [
|
219 |
+
"graduation_groups = [\n",
|
220 |
+
" 'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index\n",
|
221 |
+
"]\n",
|
222 |
+
"# graduation_groups"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"execution_count": 43,
|
228 |
+
"id": "ad0ce4a1-27fa-4867-8061-4054dbb340df",
|
229 |
+
"metadata": {},
|
230 |
+
"outputs": [],
|
231 |
+
"source": [
|
232 |
+
"t_label=data[0]\n",
|
233 |
+
"p_label=data[1]"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"execution_count": 47,
|
239 |
+
"id": "a4f4a2b9-3134-42ac-871b-4e117098cd0e",
|
240 |
+
"metadata": {},
|
241 |
+
"outputs": [],
|
242 |
+
"source": [
|
243 |
+
"# Step 1: Align graduation_group, t_label, and p_label\n",
|
244 |
+
"aligned_labels = list(zip(graduation_groups, t_label, p_label))\n",
|
245 |
+
"\n",
|
246 |
+
"# Step 2: Separate the labels for high and low groups\n",
|
247 |
+
"high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']\n",
|
248 |
+
"low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']\n",
|
249 |
+
"\n",
|
250 |
+
"high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']\n",
|
251 |
+
"low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']\n",
|
252 |
+
"\n"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": 50,
|
258 |
+
"id": "c8e34660-83d0-46a1-a218-95d609e11729",
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [
|
261 |
+
{
|
262 |
+
"data": {
|
263 |
+
"text/plain": [
|
264 |
+
"997"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
"execution_count": 50,
|
268 |
+
"metadata": {},
|
269 |
+
"output_type": "execute_result"
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"source": [
|
273 |
+
"len(low_t_labels)+len(high_t_labels)"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"execution_count": 51,
|
279 |
+
"id": "c11050db-2636-4c50-9cd4-b9943e5cee83",
|
280 |
+
"metadata": {},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, roc_curve, roc_auc_score"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "code",
|
288 |
+
"execution_count": 52,
|
289 |
+
"id": "e1309e93-7063-4f48-bbc7-11a0d449c34e",
|
290 |
+
"metadata": {},
|
291 |
+
"outputs": [
|
292 |
+
{
|
293 |
+
"name": "stdout",
|
294 |
+
"output_type": "stream",
|
295 |
+
"text": [
|
296 |
+
"ROC-AUC Score for High Graduation Rate Group: 0.675\n",
|
297 |
+
"ROC-AUC Score for Low Graduation Rate Group: 0.7489795918367347\n"
|
298 |
+
]
|
299 |
+
}
|
300 |
+
],
|
301 |
+
"source": [
|
302 |
+
"high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None\n",
|
303 |
+
"low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None\n",
|
304 |
+
"\n",
|
305 |
+
"print(\"ROC-AUC Score for High Graduation Rate Group:\", high_roc_auc)\n",
|
306 |
+
"print(\"ROC-AUC Score for Low Graduation Rate Group:\", low_roc_auc)"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "code",
|
311 |
+
"execution_count": 9,
|
312 |
+
"id": "a99e7812-817d-4f9f-b6fa-1a58aa3a34dc",
|
313 |
+
"metadata": {},
|
314 |
+
"outputs": [
|
315 |
+
{
|
316 |
+
"name": "stdout",
|
317 |
+
"output_type": "stream",
|
318 |
+
"text": [
|
319 |
+
"Task Analysis Summary:\n",
|
320 |
+
"-----------------------\n",
|
321 |
+
"Ideal Task = OptionalTask_1:\n",
|
322 |
+
" Only OptionalTask_1 done: 22501\n",
|
323 |
+
" Only OptionalTask_2 done: 20014\n",
|
324 |
+
" Both done: 24854\n",
|
325 |
+
"Ideal Task = OptionalTask_2:\n",
|
326 |
+
" Only OptionalTask_1 done: 12588\n",
|
327 |
+
" Only OptionalTask_2 done: 18942\n",
|
328 |
+
" Both done: 15147\n",
|
329 |
+
"\n"
|
330 |
+
]
|
331 |
+
}
|
332 |
+
],
|
333 |
+
"source": [
|
334 |
+
"def analyze_row(row):\n",
|
335 |
+
" # Split the row into fields\n",
|
336 |
+
" fields = row.split(\"\\t\")\n",
|
337 |
+
"\n",
|
338 |
+
" # Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer\n",
|
339 |
+
" optional_task_1_subtasks = [\"DenominatorFactor\", \"NumeratorFactor\", \"EquationAnswer\"]\n",
|
340 |
+
" optional_task_2_subtasks = [\n",
|
341 |
+
" \"FirstRow2:1\", \"FirstRow2:2\", \"FirstRow1:1\", \"FirstRow1:2\", \n",
|
342 |
+
" \"SecondRow\", \"ThirdRow\"\n",
|
343 |
+
" ]\n",
|
344 |
+
"\n",
|
345 |
+
" # Helper function to evaluate task attempts\n",
|
346 |
+
" def evaluate_tasks(fields, tasks):\n",
|
347 |
+
" task_status = {}\n",
|
348 |
+
" for task in tasks:\n",
|
349 |
+
" relevant_attempts = [f for f in fields if task in f]\n",
|
350 |
+
" if any(\"OK\" in attempt for attempt in relevant_attempts):\n",
|
351 |
+
" task_status[task] = \"Attempted (Successful)\"\n",
|
352 |
+
" elif any(\"ERROR\" in attempt for attempt in relevant_attempts):\n",
|
353 |
+
" task_status[task] = \"Attempted (Error)\"\n",
|
354 |
+
" elif any(\"JIT\" in attempt for attempt in relevant_attempts):\n",
|
355 |
+
" task_status[task] = \"Attempted (JIT)\"\n",
|
356 |
+
" else:\n",
|
357 |
+
" task_status[task] = \"Unattempted\"\n",
|
358 |
+
" return task_status\n",
|
359 |
+
"\n",
|
360 |
+
" # Evaluate tasks for each category\n",
|
361 |
+
" optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)\n",
|
362 |
+
" optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)\n",
|
363 |
+
"\n",
|
364 |
+
" # Check if tasks have any successful attempt\n",
|
365 |
+
" opt1_done = any(status == \"Attempted (Successful)\" for status in optional_task_1_status.values())\n",
|
366 |
+
" opt2_done = any(status == \"Attempted (Successful)\" for status in optional_task_2_status.values())\n",
|
367 |
+
"\n",
|
368 |
+
" return opt1_done, opt2_done\n",
|
369 |
+
"\n",
|
370 |
+
"# Read data from test_info.txt\n",
|
371 |
+
"# Read data from test_info.txt\n",
|
372 |
+
"with open(test_info_location, \"r\") as file:\n",
|
373 |
+
" data = file.readlines()\n",
|
374 |
+
"\n",
|
375 |
+
"# Assuming test_info[7] is a list with ideal tasks for each instance\n",
|
376 |
+
"ideal_tasks = test_info[6] # A list where each element is either 1 or 2\n",
|
377 |
+
"\n",
|
378 |
+
"# Initialize counters\n",
|
379 |
+
"task_counts = {\n",
|
380 |
+
" 1: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0},\n",
|
381 |
+
" 2: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0}\n",
|
382 |
+
"}\n",
|
383 |
+
"\n",
|
384 |
+
"# Analyze rows\n",
|
385 |
+
"for i, row in enumerate(data):\n",
|
386 |
+
" row = row.strip()\n",
|
387 |
+
" if not row:\n",
|
388 |
+
" continue\n",
|
389 |
+
"\n",
|
390 |
+
" ideal_task = ideal_tasks[i] # Get the ideal task for the current row\n",
|
391 |
+
" opt1_done, opt2_done = analyze_row(row)\n",
|
392 |
+
"\n",
|
393 |
+
" if ideal_task == 0:\n",
|
394 |
+
" if opt1_done and not opt2_done:\n",
|
395 |
+
" task_counts[1][\"only_opt1\"] += 1\n",
|
396 |
+
" elif not opt1_done and opt2_done:\n",
|
397 |
+
" task_counts[1][\"only_opt2\"] += 1\n",
|
398 |
+
" elif opt1_done and opt2_done:\n",
|
399 |
+
" task_counts[1][\"both\"] += 1\n",
|
400 |
+
" elif ideal_task == 1:\n",
|
401 |
+
" if opt1_done and not opt2_done:\n",
|
402 |
+
" task_counts[2][\"only_opt1\"] += 1\n",
|
403 |
+
" elif not opt1_done and opt2_done:\n",
|
404 |
+
" task_counts[2][\"only_opt2\"] += 1\n",
|
405 |
+
" elif opt1_done and opt2_done:\n",
|
406 |
+
" task_counts[2][\"both\"] += 1\n",
|
407 |
+
"\n",
|
408 |
+
"# Create a string output for results\n",
|
409 |
+
"output_summary = \"Task Analysis Summary:\\n\"\n",
|
410 |
+
"output_summary += \"-----------------------\\n\"\n",
|
411 |
+
"\n",
|
412 |
+
"for ideal_task, counts in task_counts.items():\n",
|
413 |
+
" output_summary += f\"Ideal Task = OptionalTask_{ideal_task}:\\n\"\n",
|
414 |
+
" output_summary += f\" Only OptionalTask_1 done: {counts['only_opt1']}\\n\"\n",
|
415 |
+
" output_summary += f\" Only OptionalTask_2 done: {counts['only_opt2']}\\n\"\n",
|
416 |
+
" output_summary += f\" Both done: {counts['both']}\\n\"\n",
|
417 |
+
"\n",
|
418 |
+
"print(output_summary)\n"
|
419 |
+
]
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"cell_type": "code",
|
423 |
+
"execution_count": null,
|
424 |
+
"id": "65ad9383-741f-44eb-8e8f-853ee7bc52a2",
|
425 |
+
"metadata": {},
|
426 |
+
"outputs": [],
|
427 |
+
"source": []
|
428 |
+
}
|
429 |
+
],
|
430 |
+
"metadata": {
|
431 |
+
"kernelspec": {
|
432 |
+
"display_name": "Python 3 (ipykernel)",
|
433 |
+
"language": "python",
|
434 |
+
"name": "python3"
|
435 |
+
},
|
436 |
+
"language_info": {
|
437 |
+
"codemirror_mode": {
|
438 |
+
"name": "ipython",
|
439 |
+
"version": 3
|
440 |
+
},
|
441 |
+
"file_extension": ".py",
|
442 |
+
"mimetype": "text/x-python",
|
443 |
+
"name": "python",
|
444 |
+
"nbconvert_exporter": "python",
|
445 |
+
"pygments_lexer": "ipython3",
|
446 |
+
"version": "3.12.4"
|
447 |
+
}
|
448 |
+
},
|
449 |
+
"nbformat": 4,
|
450 |
+
"nbformat_minor": 5
|
451 |
+
}
|
new_test_saved_finetuned_model.py
CHANGED
@@ -221,9 +221,12 @@ class BERTFineTuneTrainer:
|
|
221 |
for key, value in final_msg.items():
|
222 |
file.write(f"{key}: {value}\n")
|
223 |
print(final_msg)
|
|
|
224 |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
|
225 |
with open("roc_data.pkl", "wb") as f:
|
226 |
pickle.dump((fpr, tpr, thresholds), f)
|
|
|
|
|
227 |
print(final_msg)
|
228 |
f.close()
|
229 |
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1:
|
@@ -426,6 +429,7 @@ class BERTFineTuneCalibratedTrainer:
|
|
426 |
auc_score = roc_auc_score(tlabels, positive_class_probs)
|
427 |
end_time = time.time()
|
428 |
final_msg = {
|
|
|
429 |
"avg_loss": avg_loss / len(data_iter),
|
430 |
"total_acc": total_correct * 100.0 / total_element,
|
431 |
"precisions": precisions,
|
@@ -441,8 +445,7 @@ class BERTFineTuneCalibratedTrainer:
|
|
441 |
for key, value in final_msg.items():
|
442 |
file.write(f"{key}: {value}\n")
|
443 |
with open("plabels.txt","w") as file:
|
444 |
-
file.write(plabels)
|
445 |
-
|
446 |
print(final_msg)
|
447 |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
|
448 |
f.close()
|
|
|
221 |
for key, value in final_msg.items():
|
222 |
file.write(f"{key}: {value}\n")
|
223 |
print(final_msg)
|
224 |
+
# print(type(plabels),type(tlabels),plabels,tlabels)
|
225 |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
|
226 |
with open("roc_data.pkl", "wb") as f:
|
227 |
pickle.dump((fpr, tpr, thresholds), f)
|
228 |
+
with open("roc_data2.pkl", "wb") as f:
|
229 |
+
pickle.dump((tlabels,positive_class_probs), f)
|
230 |
print(final_msg)
|
231 |
f.close()
|
232 |
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1:
|
|
|
429 |
auc_score = roc_auc_score(tlabels, positive_class_probs)
|
430 |
end_time = time.time()
|
431 |
final_msg = {
|
432 |
+
"this one":"this one",
|
433 |
"avg_loss": avg_loss / len(data_iter),
|
434 |
"total_acc": total_correct * 100.0 / total_element,
|
435 |
"precisions": precisions,
|
|
|
445 |
for key, value in final_msg.items():
|
446 |
file.write(f"{key}: {value}\n")
|
447 |
with open("plabels.txt","w") as file:
|
448 |
+
file.write(plabels)
|
|
|
449 |
print(final_msg)
|
450 |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
|
451 |
f.close()
|
result.txt
CHANGED
@@ -3,5 +3,5 @@ total_acc: 69.00702106318957
|
|
3 |
precisions: 0.7236623191454734
|
4 |
recalls: 0.6900702106318957
|
5 |
f1_scores: 0.6802420656474512
|
6 |
-
time_taken_from_start:
|
7 |
auc_score: 0.7457100293916334
|
|
|
3 |
precisions: 0.7236623191454734
|
4 |
recalls: 0.6900702106318957
|
5 |
f1_scores: 0.6802420656474512
|
6 |
+
time_taken_from_start: 21.604072332382202
|
7 |
auc_score: 0.7457100293916334
|
roc_data2.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41fa9d96833c12979f8495141ee61c0ba07d4a20c5fb5bc18a7f72bf4d15e8fd
|
3 |
+
size 28023
|