File size: 1,125 Bytes
15c7cc8 d158642 15c7cc8 d158642 15c7cc8 d158642 15c7cc8 d158642 15c7cc8 d158642 15c7cc8 d158642 1a197b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import streamlit as st
from transformers import pipeline
# Initialize the transcription pipeline
transcribe = pipeline(model="openai/whisper-large-v2")
# Streamlit page configuration
st.title("Transcription Service")
st.write("Upload a YouTube URL or an audio file to transcribe.")
# Input: YouTube URL or Audio File
url = st.text_input("Enter YouTube URL:")
audio_file = st.file_uploader("Or upload an audio file (mp3, wav):")
if url:
# Process the YouTube URL and extract audio for transcription
# Note: You'll need to implement the extraction of audio from YouTube URL
st.write("Transcribing from YouTube URL...")
# audio_data = extract_audio_from_url(url) # Placeholder for actual extraction function
# transcription = transcribe(audio_data)
# st.write(transcription)
st.write("YouTube URL transcription is not implemented yet.")
elif audio_file:
# Process the uploaded audio file for transcription
st.write("Transcribing from uploaded audio file...")
transcription = transcribe(audio_file.getvalue())
st.write(transcription)
st.write("Thank you for using our service!")
|