File size: 1,125 Bytes
15c7cc8
d158642
15c7cc8
d158642
 
15c7cc8
d158642
 
 
15c7cc8
d158642
 
 
15c7cc8
d158642
 
 
 
 
 
 
 
 
 
 
 
 
15c7cc8
d158642
1a197b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import streamlit as st
from transformers import pipeline

# Initialize the transcription pipeline
transcribe = pipeline(model="openai/whisper-large-v2")

# Streamlit page configuration
st.title("Transcription Service")
st.write("Upload a YouTube URL or an audio file to transcribe.")

# Input: YouTube URL or Audio File
url = st.text_input("Enter YouTube URL:")
audio_file = st.file_uploader("Or upload an audio file (mp3, wav):")

if url:
    # Process the YouTube URL and extract audio for transcription
    # Note: You'll need to implement the extraction of audio from YouTube URL
    st.write("Transcribing from YouTube URL...")
    # audio_data = extract_audio_from_url(url) # Placeholder for actual extraction function
    # transcription = transcribe(audio_data)
    # st.write(transcription)
    st.write("YouTube URL transcription is not implemented yet.")
elif audio_file:
    # Process the uploaded audio file for transcription
    st.write("Transcribing from uploaded audio file...")
    transcription = transcribe(audio_file.getvalue())
    st.write(transcription)

st.write("Thank you for using our service!")