supernovamutinda
commited on
Commit
·
d158642
1
Parent(s):
69b0eb6
Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
import os
|
4 |
-
from gradio_client import Client
|
5 |
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
choice = st.radio("Navigation", ["Home/about","Meal Suggester","Accomodation available", "Assignment assist", "Events", "Transcribe, audio to Text"])
|
11 |
-
st.info("This project application helps you accomplish both major and minor tasks efficiently.")
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
if choice == "Meal Suggester":
|
17 |
-
st.title("Time to Eat")
|
18 |
|
19 |
-
if
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
st.title("Let's complete that assignment")
|
24 |
-
|
25 |
-
if choice == "Events":
|
26 |
-
st.title("Collaborate and Jazz. Events around You")
|
27 |
|
28 |
-
if choice == "Transcribe, audio to Text":
|
29 |
-
st.title("Tired of listening long audio? convert to Text")
|
30 |
-
|
31 |
-
def transcribe_audio(youtube_url: str, task: str = "transcribe", return_timestamps: bool = False, api_name: str = "/predict_2") -> dict:
|
32 |
-
"""
|
33 |
-
Transcribe audio from a given YouTube URL using a specified model.
|
34 |
-
Parameters:
|
35 |
-
- youtube_url (str): The YouTube URL to transcribe.
|
36 |
-
- task (str, optional): The task to perform. Default is "transcribe".
|
37 |
-
- return_timestamps (bool, optional): Whether to return timestamps. Default is True.
|
38 |
-
- api_name (str, optional): The API endpoint to use. Default is "/predict_2".
|
39 |
-
Returns:
|
40 |
-
- dict: The transcription result.
|
41 |
-
"""
|
42 |
-
client = Client("https://sanchit-gandhi-whisper-jax.hf.space/")
|
43 |
-
result = client.predict(youtube_url, task, return_timestamps, fn_index=7)
|
44 |
-
return result
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
MODEL_NAME = "openai/whisper-large-v2"
|
49 |
-
|
50 |
-
|
51 |
-
demo = gr.Blocks()
|
52 |
-
|
53 |
-
EXAMPLES = [
|
54 |
-
["https://www.youtube.com/watch?v=H1YoNlz2LxA", "translate",False],
|
55 |
-
]
|
56 |
-
|
57 |
-
|
58 |
-
yt_transcribe = gr.Interface(
|
59 |
-
fn=transcribe_audio,
|
60 |
-
inputs=[
|
61 |
-
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
62 |
-
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
63 |
-
gr.inputs.Checkbox(label="Return timestamps")
|
64 |
-
],
|
65 |
-
outputs=[gr.outputs.HTML(label="Video"),
|
66 |
-
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True)],
|
67 |
-
layout="horizontal",
|
68 |
-
theme=gr.themes.Base(),
|
69 |
-
title="Whisper Large V2: Transcribe YouTube",
|
70 |
-
description=(
|
71 |
-
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
72 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
73 |
-
" arbitrary length."
|
74 |
-
),
|
75 |
-
allow_flagging="never",
|
76 |
-
examples=EXAMPLES,
|
77 |
-
cache_examples=False
|
78 |
-
)
|
79 |
-
|
80 |
-
with demo:
|
81 |
-
gr.DuplicateButton()
|
82 |
-
gr.TabbedInterface([yt_transcribe], [ "YouTube"])
|
83 |
-
|
84 |
-
demo.launch(enable_queue=True)
|
85 |
-
|
86 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline
|
|
|
|
|
3 |
|
4 |
+
# Initialize the transcription pipeline
|
5 |
+
transcribe = pipeline(model="openai/whisper-large-v2")
|
6 |
|
7 |
+
# Streamlit page configuration
|
8 |
+
st.title("Transcription Service")
|
9 |
+
st.write("Upload a YouTube URL or an audio file to transcribe.")
|
|
|
|
|
10 |
|
11 |
+
# Input: YouTube URL or Audio File
|
12 |
+
url = st.text_input("Enter YouTube URL:")
|
13 |
+
audio_file = st.file_uploader("Or upload an audio file (mp3, wav):")
|
|
|
|
|
14 |
|
15 |
+
if url:
|
16 |
+
# Process the YouTube URL and extract audio for transcription
|
17 |
+
# Note: You'll need to implement the extraction of audio from YouTube URL
|
18 |
+
st.write("Transcribing from YouTube URL...")
|
19 |
+
# audio_data = extract_audio_from_url(url) # Placeholder for actual extraction function
|
20 |
+
# transcription = transcribe(audio_data)
|
21 |
+
# st.write(transcription)
|
22 |
+
st.write("YouTube URL transcription is not implemented yet.")
|
23 |
+
elif audio_file:
|
24 |
+
# Process the uploaded audio file for transcription
|
25 |
+
st.write("Transcribing from uploaded audio file...")
|
26 |
+
transcription = transcribe(audio_file.getvalue())
|
27 |
+
st.write(transcription)
|
28 |
|
29 |
+
st.write("Thank you for using our service!")
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|