Spaces:
Running
on
T4
Running
on
T4
File size: 12,691 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# Copyright (c) Tencent Inc. All rights reserved.
from typing import List
import torch
import torch.nn as nn
from torch import Tensor
import torch.nn.functional as F
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule, Linear
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
from mmengine.model import BaseModule
from mmyolo.registry import MODELS
from mmyolo.models.layers import CSPLayerWithTwoConv
@MODELS.register_module()
class MaxSigmoidAttnBlock(BaseModule):
"""Max Sigmoid attention block."""
def __init__(self,
in_channels: int,
out_channels: int,
guide_channels: int,
embed_channels: int,
kernel_size: int = 3,
padding: int = 1,
num_heads: int = 1,
use_depthwise: bool = False,
with_scale: bool = False,
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN',
momentum=0.03,
eps=0.001),
init_cfg: OptMultiConfig = None) -> None:
super().__init__(init_cfg=init_cfg)
conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
assert (out_channels % num_heads == 0 and
embed_channels % num_heads == 0), \
'out_channels and embed_channels should be divisible by num_heads.'
self.num_heads = num_heads
self.head_channels = out_channels // num_heads
self.embed_conv = ConvModule(
in_channels,
embed_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None) if embed_channels != in_channels else None
self.guide_fc = Linear(guide_channels, embed_channels)
self.bias = nn.Parameter(torch.zeros(num_heads))
if with_scale:
self.scale = nn.Parameter(torch.ones(1, num_heads, 1, 1))
else:
self.scale = 1.0
self.project_conv = conv(in_channels,
out_channels,
kernel_size,
stride=1,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
def forward(self, x: Tensor, guide: Tensor) -> Tensor:
"""Forward process."""
B, _, H, W = x.shape
guide = self.guide_fc(guide)
guide = guide.reshape(B, -1, self.num_heads, self.head_channels)
embed = self.embed_conv(x) if self.embed_conv is not None else x
embed = embed.reshape(B, self.num_heads, self.head_channels, H, W)
attn_weight = torch.einsum('bmchw,bnmc->bmhwn', embed, guide)
attn_weight = attn_weight.max(dim=-1)[0]
attn_weight = attn_weight / (self.head_channels**0.5)
attn_weight = attn_weight + self.bias[None, :, None, None]
attn_weight = attn_weight.sigmoid() * self.scale
x = self.project_conv(x)
x = x.reshape(B, self.num_heads, -1, H, W)
x = x * attn_weight.unsqueeze(2)
x = x.reshape(B, -1, H, W)
return x
@MODELS.register_module()
class MaxSigmoidCSPLayerWithTwoConv(CSPLayerWithTwoConv):
"""Sigmoid-attention based CSP layer with two convolution layers."""
def __init__(
self,
in_channels: int,
out_channels: int,
guide_channels: int,
embed_channels: int,
num_heads: int = 1,
expand_ratio: float = 0.5,
num_blocks: int = 1,
with_scale: bool = False,
add_identity: bool = True, # shortcut
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: OptMultiConfig = None) -> None:
super().__init__(in_channels=in_channels,
out_channels=out_channels,
expand_ratio=expand_ratio,
num_blocks=num_blocks,
add_identity=add_identity,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
init_cfg=init_cfg)
self.final_conv = ConvModule((3 + num_blocks) * self.mid_channels,
out_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.attn_block = MaxSigmoidAttnBlock(self.mid_channels,
self.mid_channels,
guide_channels=guide_channels,
embed_channels=embed_channels,
num_heads=num_heads,
with_scale=with_scale,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
def forward(self, x: Tensor, guide: Tensor) -> Tensor:
"""Forward process."""
x_main = self.main_conv(x)
x_main = list(x_main.split((self.mid_channels, self.mid_channels), 1))
x_main.extend(blocks(x_main[-1]) for blocks in self.blocks)
x_main.append(self.attn_block(x_main[-1], guide))
return self.final_conv(torch.cat(x_main, 1))
@MODELS.register_module()
class ImagePoolingAttentionModule(nn.Module):
def __init__(self,
image_channels: List[int],
text_channels: int,
embed_channels: int,
with_scale: bool = False,
num_feats: int = 3,
num_heads: int = 8,
pool_size: int = 3):
super().__init__()
self.text_channels = text_channels
self.embed_channels = embed_channels
self.num_heads = num_heads
self.num_feats = num_feats
self.head_channels = embed_channels // num_heads
self.pool_size = pool_size
if with_scale:
self.scale = nn.Parameter(torch.tensor([0.]), requires_grad=True)
else:
self.scale = 1.0
self.projections = nn.ModuleList([
ConvModule(in_channels, embed_channels, 1, act_cfg=None)
for in_channels in image_channels
])
self.query = nn.Sequential(nn.LayerNorm(text_channels),
Linear(text_channels, embed_channels))
self.key = nn.Sequential(nn.LayerNorm(embed_channels),
Linear(embed_channels, embed_channels))
self.value = nn.Sequential(nn.LayerNorm(embed_channels),
Linear(embed_channels, embed_channels))
self.proj = Linear(embed_channels, text_channels)
self.image_pools = nn.ModuleList([
nn.AdaptiveMaxPool2d((pool_size, pool_size))
for _ in range(num_feats)
])
def forward(self, text_features, image_features):
B = image_features[0].shape[0]
assert len(image_features) == self.num_feats
num_patches = self.pool_size**2
mlvl_image_features = [
pool(proj(x)).view(B, -1, num_patches)
for (x, proj, pool
) in zip(image_features, self.projections, self.image_pools)
]
mlvl_image_features = torch.cat(mlvl_image_features,
dim=-1).transpose(1, 2)
q = self.query(text_features)
k = self.key(mlvl_image_features)
v = self.value(mlvl_image_features)
q = q.reshape(B, -1, self.num_heads, self.head_channels)
k = k.reshape(B, -1, self.num_heads, self.head_channels)
v = v.reshape(B, -1, self.num_heads, self.head_channels)
attn_weight = torch.einsum('bnmc,bkmc->bmnk', q, k)
attn_weight = attn_weight / (self.head_channels**0.5)
attn_weight = F.softmax(attn_weight, dim=-1)
x = torch.einsum('bmnk,bkmc->bnmc', attn_weight, v)
x = self.proj(x.reshape(B, -1, self.embed_channels))
return x * self.scale + text_features
@MODELS.register_module()
class VanillaSigmoidBlock(BaseModule):
"""Sigmoid attention block."""
def __init__(self,
in_channels: int,
out_channels: int,
guide_channels: int,
embed_channels: int,
kernel_size: int = 3,
padding: int = 1,
num_heads: int = 1,
use_depthwise: bool = False,
with_scale: bool = False,
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN',
momentum=0.03,
eps=0.001),
init_cfg: OptMultiConfig = None) -> None:
super().__init__(init_cfg=init_cfg)
conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
assert (out_channels % num_heads == 0 and
embed_channels % num_heads == 0), \
'out_channels and embed_channels should be divisible by num_heads.'
self.num_heads = num_heads
self.head_channels = out_channels // num_heads
self.project_conv = conv(in_channels,
out_channels,
kernel_size,
stride=1,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
def forward(self, x: Tensor, guide: Tensor) -> Tensor:
"""Forward process."""
x = self.project_conv(x)
x = x * x.sigmoid()
return x
@MODELS.register_module()
class EfficientCSPLayerWithTwoConv(CSPLayerWithTwoConv):
"""Sigmoid-attention based CSP layer with two convolution layers."""
def __init__(
self,
in_channels: int,
out_channels: int,
guide_channels: int,
embed_channels: int,
num_heads: int = 1,
expand_ratio: float = 0.5,
num_blocks: int = 1,
with_scale: bool = False,
add_identity: bool = True, # shortcut
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: OptMultiConfig = None) -> None:
super().__init__(in_channels=in_channels,
out_channels=out_channels,
expand_ratio=expand_ratio,
num_blocks=num_blocks,
add_identity=add_identity,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
init_cfg=init_cfg)
self.final_conv = ConvModule((3 + num_blocks) * self.mid_channels,
out_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.attn_block = VanillaSigmoidBlock(self.mid_channels,
self.mid_channels,
guide_channels=guide_channels,
embed_channels=embed_channels,
num_heads=num_heads,
with_scale=with_scale,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
def forward(self, x: Tensor, guide: Tensor) -> Tensor:
"""Forward process."""
x_main = self.main_conv(x)
x_main = list(x_main.split((self.mid_channels, self.mid_channels), 1))
x_main.extend(blocks(x_main[-1]) for blocks in self.blocks)
x_main.append(self.attn_block(x_main[-1], guide))
return self.final_conv(torch.cat(x_main, 1))
|