Spaces:
Running
on
T4
Running
on
T4
File size: 3,831 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
# Copyright (c) Tencent Inc. All rights reserved.
import copy
import os.path as osp
from typing import List
from mmengine.fileio import get_local_path
from mmdet.datasets.api_wrappers import COCO
from mmdet.datasets import CocoDataset
from mmyolo.registry import DATASETS
from .utils import RobustBatchShapePolicyDataset
v3det_ignore_list = [
'a00013820/26_275_28143226914_ff3a247c53_c.jpg',
'n03815615/12_1489_32968099046_be38fa580e_c.jpg',
'n04550184/19_1480_2504784164_ffa3db8844_c.jpg',
'a00008703/2_363_3576131784_dfac6fc6ce_c.jpg',
'n02814533/28_2216_30224383848_a90697f1b3_c.jpg',
'n12026476/29_186_15091304754_5c219872f7_c.jpg',
'n01956764/12_2004_50133201066_72e0d9fea5_c.jpg',
'n03785016/14_2642_518053131_d07abcb5da_c.jpg',
'a00011156/33_250_4548479728_9ce5246596_c.jpg',
'a00009461/19_152_2792869324_db95bebc84_c.jpg',
]
# # ugly code here
# import json
# with open(osp.join("data/v3det/cats.json"), 'r') as f:
# _classes = json.load(f)['classes']
@DATASETS.register_module()
class V3DetDataset(CocoDataset):
"""Objects365 v1 dataset for detection."""
METAINFO = {'classes': 'classes', 'palette': None}
COCOAPI = COCO
# ann_id is unique in coco dataset.
ANN_ID_UNIQUE = True
def load_data_list(self) -> List[dict]:
"""Load annotations from an annotation file named as ``self.ann_file``
Returns:
List[dict]: A list of annotation.
""" # noqa: E501
with get_local_path(self.ann_file,
backend_args=self.backend_args) as local_path:
self.coco = self.COCOAPI(local_path)
# 'categories' list in objects365_train.json and objects365_val.json
# is inconsistent, need sort list(or dict) before get cat_ids.
cats = self.coco.cats
sorted_cats = {i: cats[i] for i in sorted(cats)}
self.coco.cats = sorted_cats
categories = self.coco.dataset['categories']
sorted_categories = sorted(categories, key=lambda i: i['id'])
self.coco.dataset['categories'] = sorted_categories
# The order of returned `cat_ids` will not
# change with the order of the `classes`
self.cat_ids = self.coco.get_cat_ids(
cat_names=self.metainfo['classes'])
self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
self.cat_img_map = copy.deepcopy(self.coco.cat_img_map)
img_ids = self.coco.get_img_ids()
data_list = []
total_ann_ids = []
for img_id in img_ids:
raw_img_info = self.coco.load_imgs([img_id])[0]
raw_img_info['img_id'] = img_id
ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
raw_ann_info = self.coco.load_anns(ann_ids)
total_ann_ids.extend(ann_ids)
file_name = osp.join(
osp.split(osp.split(raw_img_info['file_name'])[0])[-1],
osp.split(raw_img_info['file_name'])[-1])
if file_name in v3det_ignore_list:
continue
parsed_data_info = self.parse_data_info({
'raw_ann_info':
raw_ann_info,
'raw_img_info':
raw_img_info
})
data_list.append(parsed_data_info)
if self.ANN_ID_UNIQUE:
assert len(set(total_ann_ids)) == len(
total_ann_ids
), f"Annotation ids in '{self.ann_file}' are not unique!"
del self.coco
return data_list
@DATASETS.register_module()
class YOLOv5V3DetDataset(RobustBatchShapePolicyDataset, V3DetDataset):
"""Dataset for YOLOv5 VOC Dataset.
We only add `BatchShapePolicy` function compared with Objects365V1Dataset.
See `mmyolo/datasets/utils.py#BatchShapePolicy` for details
"""
pass
|