Spaces:
Running
on
T4
Running
on
T4
File size: 7,424 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# Copyright (c) Tencent Inc. All rights reserved.
import os.path as osp
from typing import List, Union
from mmengine.fileio import get_local_path, join_path
from mmengine.utils import is_abs
from mmdet.datasets.coco import CocoDataset
from mmyolo.registry import DATASETS
from .utils import RobustBatchShapePolicyDataset
@DATASETS.register_module()
class YOLOv5MixedGroundingDataset(RobustBatchShapePolicyDataset, CocoDataset):
"""Mixed grounding dataset."""
METAINFO = {
'classes': ('object',),
'palette': [(220, 20, 60)]}
def load_data_list(self) -> List[dict]:
"""Load annotations from an annotation file named as ``self.ann_file``
Returns:
List[dict]: A list of annotation.
""" # noqa: E501
with get_local_path(
self.ann_file, backend_args=self.backend_args) as local_path:
self.coco = self.COCOAPI(local_path)
img_ids = self.coco.get_img_ids()
data_list = []
total_ann_ids = []
for img_id in img_ids:
raw_img_info = self.coco.load_imgs([img_id])[0]
raw_img_info['img_id'] = img_id
ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
raw_ann_info = self.coco.load_anns(ann_ids)
total_ann_ids.extend(ann_ids)
parsed_data_info = self.parse_data_info({
'raw_ann_info':
raw_ann_info,
'raw_img_info':
raw_img_info
})
data_list.append(parsed_data_info)
if self.ANN_ID_UNIQUE:
assert len(set(total_ann_ids)) == len(
total_ann_ids
), f"Annotation ids in '{self.ann_file}' are not unique!"
del self.coco
# print(len(data_list))
return data_list
def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]:
"""Parse raw annotation to target format.
Args:
raw_data_info (dict): Raw data information load from ``ann_file``
Returns:
Union[dict, List[dict]]: Parsed annotation.
"""
img_info = raw_data_info['raw_img_info']
ann_info = raw_data_info['raw_ann_info']
data_info = {}
img_path = None
img_prefix = self.data_prefix.get('img', None)
if isinstance(img_prefix, str):
img_path = osp.join(img_prefix, img_info['file_name'])
elif isinstance(img_prefix, (list, tuple)):
for prefix in img_prefix:
candidate_img_path = osp.join(prefix, img_info['file_name'])
if osp.exists(candidate_img_path):
img_path = candidate_img_path
break
assert img_path is not None, (
f'Image path {img_info["file_name"]} not found in'
f'{img_prefix}')
if self.data_prefix.get('seg', None):
seg_map_path = osp.join(
self.data_prefix['seg'],
img_info['file_name'].rsplit('.', 1)[0] + self.seg_map_suffix)
else:
seg_map_path = None
data_info['img_path'] = img_path
data_info['img_id'] = img_info['img_id']
data_info['seg_map_path'] = seg_map_path
data_info['height'] = float(img_info['height'])
data_info['width'] = float(img_info['width'])
cat2id = {}
texts = []
for ann in ann_info:
cat_name = ' '.join([img_info['caption'][t[0]:t[1]]
for t in ann['tokens_positive']])
if cat_name not in cat2id:
cat2id[cat_name] = len(cat2id)
texts.append([cat_name])
data_info['texts'] = texts
instances = []
for i, ann in enumerate(ann_info):
instance = {}
if ann.get('ignore', False):
continue
x1, y1, w, h = ann['bbox']
inter_w = max(0,
min(x1 + w, float(img_info['width'])) - max(x1, 0))
inter_h = max(0,
min(y1 + h, float(img_info['height'])) - max(y1, 0))
if inter_w * inter_h == 0:
continue
if ann['area'] <= 0 or w < 1 or h < 1:
continue
bbox = [x1, y1, x1 + w, y1 + h]
if ann.get('iscrowd', False):
instance['ignore_flag'] = 1
else:
instance['ignore_flag'] = 0
instance['bbox'] = bbox
cat_name = ' '.join([img_info['caption'][t[0]:t[1]]
for t in ann['tokens_positive']])
instance['bbox_label'] = cat2id[cat_name]
if ann.get('segmentation', None):
instance['mask'] = ann['segmentation']
instances.append(instance)
# NOTE: for detection task, we set `is_detection` to 1
data_info['is_detection'] = 1
data_info['instances'] = instances
# print(data_info['texts'])
return data_info
def filter_data(self) -> List[dict]:
"""Filter annotations according to filter_cfg.
Returns:
List[dict]: Filtered results.
"""
if self.test_mode:
return self.data_list
if self.filter_cfg is None:
return self.data_list
filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False)
min_size = self.filter_cfg.get('min_size', 0)
# obtain images that contain annotation
ids_with_ann = set(data_info['img_id'] for data_info in self.data_list)
valid_data_infos = []
for i, data_info in enumerate(self.data_list):
img_id = data_info['img_id']
width = int(data_info['width'])
height = int(data_info['height'])
if filter_empty_gt and img_id not in ids_with_ann:
continue
if min(width, height) >= min_size:
valid_data_infos.append(data_info)
return valid_data_infos
def _join_prefix(self):
"""Join ``self.data_root`` with ``self.data_prefix`` and
``self.ann_file``.
"""
# Automatically join annotation file path with `self.root` if
# `self.ann_file` is not an absolute path.
if self.ann_file and not is_abs(self.ann_file) and self.data_root:
self.ann_file = join_path(self.data_root, self.ann_file)
# Automatically join data directory with `self.root` if path value in
# `self.data_prefix` is not an absolute path.
for data_key, prefix in self.data_prefix.items():
if isinstance(prefix, (list, tuple)):
abs_prefix = []
for p in prefix:
if not is_abs(p) and self.data_root:
abs_prefix.append(join_path(self.data_root, p))
else:
abs_prefix.append(p)
self.data_prefix[data_key] = abs_prefix
elif isinstance(prefix, str):
if not is_abs(prefix) and self.data_root:
self.data_prefix[data_key] = join_path(
self.data_root, prefix)
else:
self.data_prefix[data_key] = prefix
else:
raise TypeError('prefix should be a string, tuple or list,'
f'but got {type(prefix)}')
|