Spaces:
Running
on
T4
Running
on
T4
File size: 8,045 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch import Tensor
_XYWH2XYXY = torch.tensor([[1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0],
[-0.5, 0.0, 0.5, 0.0], [0.0, -0.5, 0.0, 0.5]],
dtype=torch.float32)
class TRTEfficientNMSop(torch.autograd.Function):
@staticmethod
def forward(
ctx,
boxes: Tensor,
scores: Tensor,
background_class: int = -1,
box_coding: int = 0,
iou_threshold: float = 0.45,
max_output_boxes: int = 100,
plugin_version: str = '1',
score_activation: int = 0,
score_threshold: float = 0.25,
):
batch_size, _, num_classes = scores.shape
num_det = torch.randint(
0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
det_boxes = torch.randn(batch_size, max_output_boxes, 4)
det_scores = torch.randn(batch_size, max_output_boxes)
det_classes = torch.randint(
0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
return num_det, det_boxes, det_scores, det_classes
@staticmethod
def symbolic(g,
boxes: Tensor,
scores: Tensor,
background_class: int = -1,
box_coding: int = 0,
iou_threshold: float = 0.45,
max_output_boxes: int = 100,
plugin_version: str = '1',
score_activation: int = 0,
score_threshold: float = 0.25):
out = g.op(
'TRT::EfficientNMS_TRT',
boxes,
scores,
background_class_i=background_class,
box_coding_i=box_coding,
iou_threshold_f=iou_threshold,
max_output_boxes_i=max_output_boxes,
plugin_version_s=plugin_version,
score_activation_i=score_activation,
score_threshold_f=score_threshold,
outputs=4)
num_det, det_boxes, det_scores, det_classes = out
return num_det, det_boxes, det_scores, det_classes
class TRTbatchedNMSop(torch.autograd.Function):
"""TensorRT NMS operation."""
@staticmethod
def forward(
ctx,
boxes: Tensor,
scores: Tensor,
plugin_version: str = '1',
shareLocation: int = 1,
backgroundLabelId: int = -1,
numClasses: int = 80,
topK: int = 1000,
keepTopK: int = 100,
scoreThreshold: float = 0.25,
iouThreshold: float = 0.45,
isNormalized: int = 0,
clipBoxes: int = 0,
scoreBits: int = 16,
caffeSemantics: int = 1,
):
batch_size, _, numClasses = scores.shape
num_det = torch.randint(
0, keepTopK, (batch_size, 1), dtype=torch.int32)
det_boxes = torch.randn(batch_size, keepTopK, 4)
det_scores = torch.randn(batch_size, keepTopK)
det_classes = torch.randint(0, numClasses,
(batch_size, keepTopK)).float()
return num_det, det_boxes, det_scores, det_classes
@staticmethod
def symbolic(
g,
boxes: Tensor,
scores: Tensor,
plugin_version: str = '1',
shareLocation: int = 1,
backgroundLabelId: int = -1,
numClasses: int = 80,
topK: int = 1000,
keepTopK: int = 100,
scoreThreshold: float = 0.25,
iouThreshold: float = 0.45,
isNormalized: int = 0,
clipBoxes: int = 0,
scoreBits: int = 16,
caffeSemantics: int = 1,
):
out = g.op(
'TRT::BatchedNMSDynamic_TRT',
boxes,
scores,
shareLocation_i=shareLocation,
plugin_version_s=plugin_version,
backgroundLabelId_i=backgroundLabelId,
numClasses_i=numClasses,
topK_i=topK,
keepTopK_i=keepTopK,
scoreThreshold_f=scoreThreshold,
iouThreshold_f=iouThreshold,
isNormalized_i=isNormalized,
clipBoxes_i=clipBoxes,
scoreBits_i=scoreBits,
caffeSemantics_i=caffeSemantics,
outputs=4)
num_det, det_boxes, det_scores, det_classes = out
return num_det, det_boxes, det_scores, det_classes
def _efficient_nms(
boxes: Tensor,
scores: Tensor,
max_output_boxes_per_class: int = 1000,
iou_threshold: float = 0.5,
score_threshold: float = 0.05,
pre_top_k: int = -1,
keep_top_k: int = 100,
box_coding: int = 0,
):
"""Wrapper for `efficient_nms` with TensorRT.
Args:
boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4].
scores (Tensor): The detection scores of shape
[N, num_boxes, num_classes].
max_output_boxes_per_class (int): Maximum number of output
boxes per class of nms. Defaults to 1000.
iou_threshold (float): IOU threshold of nms. Defaults to 0.5.
score_threshold (float): score threshold of nms.
Defaults to 0.05.
pre_top_k (int): Number of top K boxes to keep before nms.
Defaults to -1.
keep_top_k (int): Number of top K boxes to keep after nms.
Defaults to -1.
box_coding (int): Bounding boxes format for nms.
Defaults to 0 means [x1, y1 ,x2, y2].
Set to 1 means [x, y, w, h].
Returns:
tuple[Tensor, Tensor, Tensor, Tensor]:
(num_det, det_boxes, det_scores, det_classes),
`num_det` of shape [N, 1]
`det_boxes` of shape [N, num_det, 4]
`det_scores` of shape [N, num_det]
`det_classes` of shape [N, num_det]
"""
num_det, det_boxes, det_scores, det_classes = TRTEfficientNMSop.apply(
boxes, scores, -1, box_coding, iou_threshold, keep_top_k, '1', 0,
score_threshold)
return num_det, det_boxes, det_scores, det_classes
def _batched_nms(
boxes: Tensor,
scores: Tensor,
max_output_boxes_per_class: int = 1000,
iou_threshold: float = 0.5,
score_threshold: float = 0.05,
pre_top_k: int = -1,
keep_top_k: int = 100,
box_coding: int = 0,
):
"""Wrapper for `efficient_nms` with TensorRT.
Args:
boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4].
scores (Tensor): The detection scores of shape
[N, num_boxes, num_classes].
max_output_boxes_per_class (int): Maximum number of output
boxes per class of nms. Defaults to 1000.
iou_threshold (float): IOU threshold of nms. Defaults to 0.5.
score_threshold (float): score threshold of nms.
Defaults to 0.05.
pre_top_k (int): Number of top K boxes to keep before nms.
Defaults to -1.
keep_top_k (int): Number of top K boxes to keep after nms.
Defaults to -1.
box_coding (int): Bounding boxes format for nms.
Defaults to 0 means [x1, y1 ,x2, y2].
Set to 1 means [x, y, w, h].
Returns:
tuple[Tensor, Tensor, Tensor, Tensor]:
(num_det, det_boxes, det_scores, det_classes),
`num_det` of shape [N, 1]
`det_boxes` of shape [N, num_det, 4]
`det_scores` of shape [N, num_det]
`det_classes` of shape [N, num_det]
"""
if box_coding == 1:
boxes = boxes @ (_XYWH2XYXY.to(boxes.device))
boxes = boxes if boxes.dim() == 4 else boxes.unsqueeze(2)
_, _, numClasses = scores.shape
num_det, det_boxes, det_scores, det_classes = TRTbatchedNMSop.apply(
boxes, scores, '1', 1, -1, int(numClasses), min(pre_top_k, 4096),
keep_top_k, score_threshold, iou_threshold, 0, 0, 16, 1)
det_classes = det_classes.int()
return num_det, det_boxes, det_scores, det_classes
def efficient_nms(*args, **kwargs):
"""Wrapper function for `_efficient_nms`."""
return _efficient_nms(*args, **kwargs)
def batched_nms(*args, **kwargs):
"""Wrapper function for `_batched_nms`."""
return _batched_nms(*args, **kwargs)
|