Spaces:
Runtime error
Runtime error
File size: 7,929 Bytes
34b12ff d9f2adf d2b0a3c d9f2adf 34b12ff d9f2adf 6988d55 d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d2b0a3c d9f2adf 34b12ff d9f2adf 34b12ff d2b0a3c 34b12ff d9f2adf 34b12ff d2b0a3c 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d2b0a3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import streamlit as st
from pyvis.network import Network
import plotly.express as px
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from bertopic import BERTopic
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
import numpy as np
import networkx as nx
import textwrap
import logging
from streamlit.report_thread import REPORT_CONTEXT_ATTR_NAME
from threading import current_thread
from contextlib import contextmanager
from io import StringIO
import sys
import time
logger = logging.getLogger('main')
def reset_default_topic_sliders(min_topic_size, n_gram_range):
st.session_state['min_topic_size'] = min_topic_size
st.session_state['n_gram_range'] = n_gram_range
def reset_default_threshold_slider(threshold):
st.session_state['threshold'] = threshold
@st.cache()
def load_data(uploaded_file):
data = pd.read_csv(uploaded_file)
return data
@st.cache()
def embedding_gen(data):
logger.info('Calculating Embeddings')
return SentenceTransformer('./sentence-transformers_allenai-specter').encode(data['Text'])
@st.cache()
def load_bertopic_model(min_topic_size, n_gram_range):
logger.info('Loading BERTopic model')
return BERTopic(
vectorizer_model=CountVectorizer(
stop_words='english', ngram_range=n_gram_range
),
min_topic_size=min_topic_size,
verbose=True
)
@st.cache()
def topic_modeling(data, min_topic_size, n_gram_range):
"""Topic modeling using BERTopic
"""
logger.info('Calculating Topic Model')
topic_model = load_bertopic_model(min_topic_size, n_gram_range)
# Train the topic model
topic_data = data.copy()
topic_data["Topic"], topic_data["Probs"] = topic_model.fit_transform(
data['Text'], embeddings=embedding_gen(data))
# Merge topic results
topic_df = topic_model.get_topic_info()
topic_df.columns = ['Topic', 'Topic_Count', 'Topic_Name']
topic_df = topic_df.sort_values(by='Topic_Count', ascending=False)
topic_data = topic_data.merge(topic_df, on='Topic', how='left')
# Topics
# Optimization: Only take top 10 largest topics
topics = topic_df.head(10).set_index('Topic').to_dict(orient='index')
logger.info('Topic Modeling Complete')
return topic_data, topic_model, topics
@st.cache()
def cosine_sim(data):
logger.info('Cosine similarity')
cosine_sim_matrix = cosine_similarity(embedding_gen(data))
# Take only upper triangular matrix
cosine_sim_matrix = np.triu(cosine_sim_matrix, k=1)
return cosine_sim_matrix
@st.cache()
def calc_max_connections(num_papers, ratio):
n = ratio*num_papers
return n*(n-1)/2
@st.cache()
def calc_neighbors(cosine_sim_matrix, threshold):
neighbors = np.argwhere(cosine_sim_matrix >= threshold).tolist()
return neighbors, len(neighbors)
@st.cache()
def calc_optimal_threshold(cosine_sim_matrix, max_connections):
"""Calculates the optimal threshold for the cosine similarity matrix.
Allows a max of max_connections
"""
logger.info('Calculating optimal threshold')
thresh_sweep = np.arange(0.05, 1.05, 0.05)[::-1]
for idx, threshold in enumerate(thresh_sweep):
_, num_neighbors = calc_neighbors(cosine_sim_matrix, threshold)
if num_neighbors > max_connections:
break
return round(thresh_sweep[idx-1], 2).item(), round(thresh_sweep[idx], 2).item()
def nx_hash_func(nx_net):
"""Hash function for NetworkX graphs.
"""
return (list(nx_net.nodes()), list(nx_net.edges()))
def pyvis_hash_func(pyvis_net):
"""Hash function for pyvis graphs.
"""
return (pyvis_net.nodes, pyvis_net.edges)
@st.cache(hash_funcs={nx.Graph: nx_hash_func, Network: pyvis_hash_func})
def network_plot(topic_data, topics, neighbors):
"""Creates a network plot of connected papers. Colored by Topic Model topics.
"""
logger.info('Calculating Network Plot')
nx_net = nx.Graph()
pyvis_net = Network(height='750px', width='100%', bgcolor='#222222')
# Add Nodes
nodes = [
(
row.Index,
{
'group': row.Topic,
'label': row.Index,
'title': row.Text,
'size': 20, 'font': {'size': 20, 'color': 'white'}
}
)
for row in topic_data.itertuples()
]
nx_net.add_nodes_from(nodes)
assert(nx_net.number_of_nodes() == len(topic_data))
# Add Edges
nx_net.add_edges_from(neighbors)
assert(nx_net.number_of_edges() == len(neighbors))
# Optimization: Remove Isolated nodes
nx_net.remove_nodes_from(list(nx.isolates(nx_net)))
# Add Legend Nodes
step = 150
x = -2000
y = -500
legend_nodes = [
(
len(topic_data)+idx,
{
'group': key, 'label': ', '.join(value['Topic_Name'].split('_')[1:]),
'size': 30, 'physics': False, 'x': x, 'y': f'{y + idx*step}px',
# , 'fixed': True,
'shape': 'box', 'widthConstraint': 1000, 'font': {'size': 40, 'color': 'black'}
}
)
for idx, (key, value) in enumerate(topics.items())
]
nx_net.add_nodes_from(legend_nodes)
# Plot the Pyvis graph
pyvis_net.from_nx(nx_net)
return nx_net, pyvis_net
def text_processing(text):
text = text.split('[SEP]')
text = '<br><br>'.join(text)
text = '<br>'.join(textwrap.wrap(text, width=50))[:500]
text = text + '...'
return text
@st.cache()
def network_centrality(topic_data, centrality, centrality_option):
"""Calculates the centrality of the network
"""
logger.info('Calculating Network Centrality')
# Sort Top 10 Central nodes
central_nodes = sorted(
centrality.items(), key=lambda item: item[1], reverse=True)
central_nodes = pd.DataFrame(central_nodes, columns=[
'node', centrality_option]).set_index('node')
joined_data = topic_data.join(central_nodes)
top_central_nodes = joined_data.sort_values(
centrality_option, ascending=False).head(10)
# Prepare for plot
top_central_nodes = top_central_nodes.reset_index()
top_central_nodes['index'] = top_central_nodes['index'].astype(str)
top_central_nodes['Topic_Name'] = top_central_nodes['Topic_Name'].apply(
lambda x: ', '.join(x.split('_')[1:]))
top_central_nodes['Text'] = top_central_nodes['Text'].apply(
text_processing)
# Plot the Top 10 Central nodes
fig = px.bar(top_central_nodes, x=centrality_option, y='index',
color='Topic_Name', hover_data=['Text'], orientation='h')
fig.update_layout(yaxis={'categoryorder': 'total ascending', 'visible': False, 'showticklabels': False},
font={'size': 15}, height=800)
return fig
# Progress bar printer
# https://github.com/BugzTheBunny/streamlit_logging_output_example/blob/main/app.py
# https://discuss.streamlit.io/t/cannot-print-the-terminal-output-in-streamlit/6602/34
@contextmanager
def st_redirect(src, dst):
placeholder = st.empty()
output_func = getattr(placeholder, dst)
with StringIO() as buffer:
old_write = src.write
def new_write(b):
if getattr(current_thread(), REPORT_CONTEXT_ATTR_NAME, None):
buffer.write(b)
time.sleep(1)
buffer.seek(0) # returns pointer to 0 position
output_func(b)
else:
old_write(b)
try:
src.write = new_write
yield
finally:
src.write = old_write
@contextmanager
def st_stdout(dst):
"this will show the prints"
with st_redirect(sys.stdout, dst):
yield
@contextmanager
def st_stderr(dst):
"This will show the logging"
with st_redirect(sys.stderr, dst):
yield
|