File size: 7,929 Bytes
34b12ff
 
 
 
 
 
 
 
 
 
d9f2adf
 
 
d2b0a3c
 
 
 
 
 
 
d9f2adf
34b12ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f2adf
 
 
6988d55
d9f2adf
 
 
 
 
 
34b12ff
d9f2adf
 
 
 
34b12ff
 
d9f2adf
 
 
 
 
 
 
34b12ff
 
d9f2adf
 
 
34b12ff
 
d9f2adf
 
 
 
34b12ff
 
d9f2adf
 
34b12ff
d2b0a3c
 
d9f2adf
34b12ff
 
 
 
d9f2adf
 
34b12ff
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b0a3c
 
 
 
 
 
 
34b12ff
 
 
 
 
d9f2adf
 
34b12ff
d2b0a3c
 
34b12ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f2adf
34b12ff
 
d9f2adf
34b12ff
 
 
 
 
 
 
 
 
 
d9f2adf
34b12ff
 
 
d9f2adf
34b12ff
 
d9f2adf
 
 
 
 
 
 
 
34b12ff
 
 
 
 
 
 
d9f2adf
34b12ff
d9f2adf
34b12ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f2adf
 
 
 
 
 
 
 
34b12ff
d9f2adf
34b12ff
 
d9f2adf
34b12ff
 
 
 
 
 
d9f2adf
 
34b12ff
 
 
d9f2adf
 
 
 
 
 
 
 
34b12ff
d9f2adf
 
 
 
34b12ff
d2b0a3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import streamlit as st
from pyvis.network import Network
import plotly.express as px
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from bertopic import BERTopic
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
import numpy as np
import networkx as nx
import textwrap
import logging

from streamlit.report_thread import REPORT_CONTEXT_ATTR_NAME
from threading import current_thread
from contextlib import contextmanager
from io import StringIO
import sys
import time

logger = logging.getLogger('main')


def reset_default_topic_sliders(min_topic_size, n_gram_range):
    st.session_state['min_topic_size'] = min_topic_size
    st.session_state['n_gram_range'] = n_gram_range


def reset_default_threshold_slider(threshold):
    st.session_state['threshold'] = threshold


@st.cache()
def load_data(uploaded_file):
    data = pd.read_csv(uploaded_file)

    return data


@st.cache()
def embedding_gen(data):
    logger.info('Calculating Embeddings')
    return SentenceTransformer('./sentence-transformers_allenai-specter').encode(data['Text'])


@st.cache()
def load_bertopic_model(min_topic_size, n_gram_range):
    logger.info('Loading BERTopic model')
    return BERTopic(
        vectorizer_model=CountVectorizer(
            stop_words='english', ngram_range=n_gram_range
        ),
        min_topic_size=min_topic_size,
        verbose=True
    )


@st.cache()
def topic_modeling(data, min_topic_size, n_gram_range):
    """Topic modeling using BERTopic
    """
    logger.info('Calculating Topic Model')
    topic_model = load_bertopic_model(min_topic_size, n_gram_range)

    # Train the topic model
    topic_data = data.copy()
    topic_data["Topic"], topic_data["Probs"] = topic_model.fit_transform(
        data['Text'], embeddings=embedding_gen(data))

    # Merge topic results
    topic_df = topic_model.get_topic_info()
    topic_df.columns = ['Topic', 'Topic_Count', 'Topic_Name']
    topic_df = topic_df.sort_values(by='Topic_Count', ascending=False)
    topic_data = topic_data.merge(topic_df, on='Topic', how='left')

    # Topics
    # Optimization: Only take top 10 largest topics
    topics = topic_df.head(10).set_index('Topic').to_dict(orient='index')

    logger.info('Topic Modeling Complete')

    return topic_data, topic_model, topics


@st.cache()
def cosine_sim(data):
    logger.info('Cosine similarity')
    cosine_sim_matrix = cosine_similarity(embedding_gen(data))

    # Take only upper triangular matrix
    cosine_sim_matrix = np.triu(cosine_sim_matrix, k=1)

    return cosine_sim_matrix


@st.cache()
def calc_max_connections(num_papers, ratio):
    n = ratio*num_papers

    return n*(n-1)/2


@st.cache()
def calc_neighbors(cosine_sim_matrix, threshold):
    neighbors = np.argwhere(cosine_sim_matrix >= threshold).tolist()

    return neighbors, len(neighbors)


@st.cache()
def calc_optimal_threshold(cosine_sim_matrix, max_connections):
    """Calculates the optimal threshold for the cosine similarity matrix.
    Allows a max of max_connections
    """
    logger.info('Calculating optimal threshold')
    thresh_sweep = np.arange(0.05, 1.05, 0.05)[::-1]
    for idx, threshold in enumerate(thresh_sweep):
        _, num_neighbors = calc_neighbors(cosine_sim_matrix, threshold)
        if num_neighbors > max_connections:
            break

    return round(thresh_sweep[idx-1], 2).item(), round(thresh_sweep[idx], 2).item()


def nx_hash_func(nx_net):
    """Hash function for NetworkX graphs.
    """
    return (list(nx_net.nodes()), list(nx_net.edges()))


def pyvis_hash_func(pyvis_net):
    """Hash function for pyvis graphs.
    """
    return (pyvis_net.nodes, pyvis_net.edges)


@st.cache(hash_funcs={nx.Graph: nx_hash_func, Network: pyvis_hash_func})
def network_plot(topic_data, topics, neighbors):
    """Creates a network plot of connected papers. Colored by Topic Model topics.
    """
    logger.info('Calculating Network Plot')
    nx_net = nx.Graph()
    pyvis_net = Network(height='750px', width='100%', bgcolor='#222222')

    # Add Nodes
    nodes = [
        (
            row.Index,
            {
                'group': row.Topic,
                'label': row.Index,
                'title': row.Text,
                'size': 20, 'font': {'size': 20, 'color': 'white'}
            }
        )
        for row in topic_data.itertuples()
    ]
    nx_net.add_nodes_from(nodes)
    assert(nx_net.number_of_nodes() == len(topic_data))

    # Add Edges
    nx_net.add_edges_from(neighbors)
    assert(nx_net.number_of_edges() == len(neighbors))

    # Optimization: Remove Isolated nodes
    nx_net.remove_nodes_from(list(nx.isolates(nx_net)))

    # Add Legend Nodes
    step = 150
    x = -2000
    y = -500
    legend_nodes = [
        (
            len(topic_data)+idx,
            {
                'group': key, 'label': ', '.join(value['Topic_Name'].split('_')[1:]),
                'size': 30, 'physics': False, 'x': x, 'y': f'{y + idx*step}px',
                # , 'fixed': True,
                'shape': 'box', 'widthConstraint': 1000, 'font': {'size': 40, 'color': 'black'}
            }
        )
        for idx, (key, value) in enumerate(topics.items())
    ]
    nx_net.add_nodes_from(legend_nodes)

    # Plot the Pyvis graph
    pyvis_net.from_nx(nx_net)

    return nx_net, pyvis_net


def text_processing(text):
    text = text.split('[SEP]')
    text = '<br><br>'.join(text)
    text = '<br>'.join(textwrap.wrap(text, width=50))[:500]
    text = text + '...'
    return text


@st.cache()
def network_centrality(topic_data, centrality, centrality_option):
    """Calculates the centrality of the network
    """
    logger.info('Calculating Network Centrality')
    # Sort Top 10 Central nodes
    central_nodes = sorted(
        centrality.items(), key=lambda item: item[1], reverse=True)
    central_nodes = pd.DataFrame(central_nodes, columns=[
                                 'node', centrality_option]).set_index('node')

    joined_data = topic_data.join(central_nodes)

    top_central_nodes = joined_data.sort_values(
        centrality_option, ascending=False).head(10)

    # Prepare for plot
    top_central_nodes = top_central_nodes.reset_index()
    top_central_nodes['index'] = top_central_nodes['index'].astype(str)
    top_central_nodes['Topic_Name'] = top_central_nodes['Topic_Name'].apply(
        lambda x: ', '.join(x.split('_')[1:]))
    top_central_nodes['Text'] = top_central_nodes['Text'].apply(
        text_processing)

    # Plot the Top 10 Central nodes
    fig = px.bar(top_central_nodes, x=centrality_option, y='index',
                 color='Topic_Name', hover_data=['Text'], orientation='h')
    fig.update_layout(yaxis={'categoryorder': 'total ascending', 'visible': False, 'showticklabels': False},
                      font={'size': 15}, height=800)
    return fig


# Progress bar printer
# https://github.com/BugzTheBunny/streamlit_logging_output_example/blob/main/app.py
# https://discuss.streamlit.io/t/cannot-print-the-terminal-output-in-streamlit/6602/34
@contextmanager
def st_redirect(src, dst):
    placeholder = st.empty()
    output_func = getattr(placeholder, dst)

    with StringIO() as buffer:
        old_write = src.write

        def new_write(b):
            if getattr(current_thread(), REPORT_CONTEXT_ATTR_NAME, None):
                buffer.write(b)
                time.sleep(1)
                buffer.seek(0)  # returns pointer to 0 position
                output_func(b)
            else:
                old_write(b)

        try:
            src.write = new_write
            yield
        finally:
            src.write = old_write


@contextmanager
def st_stdout(dst):
    "this will show the prints"
    with st_redirect(sys.stdout, dst):
        yield


@contextmanager
def st_stderr(dst):
    "This will show the logging"
    with st_redirect(sys.stderr, dst):
        yield