Add MFU and MBU
#30
by
AppleSwing
- opened
- app.py +30 -4
- backend-cli.py +69 -42
- requirements.txt +2 -1
- src/backend/envs.py +1 -0
- src/backend/hflm_with_measurement.py +103 -12
- src/backend/run_eval_suite.py +8 -0
- src/backend/tasks/gsm8k/gsm8k-custom.yaml +47 -0
- src/backend/tasks/measurement_task_utils.py +9 -0
- src/display/about.py +11 -1
- src/display/imgs/Netmind.AI_LOGO.jpg +0 -0
- src/display/utils.py +15 -10
- src/submission/check_validity.py +3 -2
- src/utils.py +117 -4
app.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
import os
|
3 |
import datetime
|
4 |
import socket
|
|
|
5 |
from threading import Thread
|
6 |
|
7 |
import gradio as gr
|
@@ -20,6 +21,7 @@ from src.display.about import (
|
|
20 |
LLM_BENCHMARKS_DETAILS,
|
21 |
FAQ_TEXT,
|
22 |
TITLE,
|
|
|
23 |
)
|
24 |
|
25 |
from src.display.css_html_js import custom_css
|
@@ -89,6 +91,17 @@ def init_space():
|
|
89 |
EVAL_REQUESTS_PATH, EVAL_COLS
|
90 |
)
|
91 |
return dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# Searching and filtering
|
94 |
def update_table(
|
@@ -96,7 +109,8 @@ def update_table(
|
|
96 |
):
|
97 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query)
|
98 |
filtered_df = filter_queries(query, filtered_df)
|
99 |
-
|
|
|
100 |
return df
|
101 |
|
102 |
|
@@ -204,10 +218,21 @@ def load_query(request: gr.Request):
|
|
204 |
return query
|
205 |
|
206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
demo = gr.Blocks(css=custom_css)
|
208 |
with demo:
|
209 |
gr.HTML(TITLE)
|
210 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
211 |
|
212 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
213 |
with gr.TabItem("open-moe-llm-leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
@@ -270,18 +295,19 @@ with demo:
|
|
270 |
# )
|
271 |
|
272 |
# breakpoint()
|
273 |
-
|
274 |
leaderboard_table = gr.components.Dataframe(
|
275 |
value=(
|
276 |
leaderboard_df[
|
277 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
278 |
+ shown_columns.value
|
|
|
279 |
+ [AutoEvalColumn.dummy.name]
|
280 |
]
|
281 |
if leaderboard_df.empty is False
|
282 |
else leaderboard_df
|
283 |
),
|
284 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
285 |
datatype=TYPES,
|
286 |
elem_id="leaderboard-table",
|
287 |
interactive=False,
|
@@ -313,7 +339,7 @@ with demo:
|
|
313 |
demo.load(load_query, inputs=[], outputs=[search_bar])
|
314 |
|
315 |
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size]:
|
316 |
-
selector.
|
317 |
update_table,
|
318 |
[
|
319 |
hidden_leaderboard_table_for_search,
|
|
|
2 |
import os
|
3 |
import datetime
|
4 |
import socket
|
5 |
+
import base64
|
6 |
from threading import Thread
|
7 |
|
8 |
import gradio as gr
|
|
|
21 |
LLM_BENCHMARKS_DETAILS,
|
22 |
FAQ_TEXT,
|
23 |
TITLE,
|
24 |
+
ACKNOWLEDGEMENT_TEXT,
|
25 |
)
|
26 |
|
27 |
from src.display.css_html_js import custom_css
|
|
|
91 |
EVAL_REQUESTS_PATH, EVAL_COLS
|
92 |
)
|
93 |
return dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
94 |
+
|
95 |
+
|
96 |
+
def add_benchmark_columns(shown_columns):
|
97 |
+
benchmark_columns = []
|
98 |
+
for benchmark in BENCHMARK_COLS:
|
99 |
+
if benchmark in shown_columns:
|
100 |
+
for c in COLS:
|
101 |
+
if benchmark in c and benchmark != c:
|
102 |
+
benchmark_columns.append(c)
|
103 |
+
return benchmark_columns
|
104 |
+
|
105 |
|
106 |
# Searching and filtering
|
107 |
def update_table(
|
|
|
109 |
):
|
110 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query)
|
111 |
filtered_df = filter_queries(query, filtered_df)
|
112 |
+
benchmark_columns = add_benchmark_columns(columns)
|
113 |
+
df = select_columns(filtered_df, columns + benchmark_columns)
|
114 |
return df
|
115 |
|
116 |
|
|
|
218 |
return query
|
219 |
|
220 |
|
221 |
+
def get_image_html(url, image_path):
|
222 |
+
with open(image_path, "rb") as image_file:
|
223 |
+
encoded_string = base64.b64encode(image_file.read()).decode()
|
224 |
+
return f'<a href="{url}" target="_blank"><img src="data:image/jpg;base64,{encoded_string}" alt="NetMind.AI Logo" style="width:100pt;"></a>'
|
225 |
+
|
226 |
+
|
227 |
+
# Prepare the HTML content with the image
|
228 |
+
image_html = get_image_html("https://netmind.ai/home", "./src/display/imgs/Netmind.AI_LOGO.jpg")
|
229 |
+
|
230 |
+
|
231 |
demo = gr.Blocks(css=custom_css)
|
232 |
with demo:
|
233 |
gr.HTML(TITLE)
|
234 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
235 |
+
gr.HTML(ACKNOWLEDGEMENT_TEXT.format(image_html=image_html))
|
236 |
|
237 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
238 |
with gr.TabItem("open-moe-llm-leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
|
|
295 |
# )
|
296 |
|
297 |
# breakpoint()
|
298 |
+
benchmark_columns = add_benchmark_columns(shown_columns.value)
|
299 |
leaderboard_table = gr.components.Dataframe(
|
300 |
value=(
|
301 |
leaderboard_df[
|
302 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
303 |
+ shown_columns.value
|
304 |
+
+ benchmark_columns
|
305 |
+ [AutoEvalColumn.dummy.name]
|
306 |
]
|
307 |
if leaderboard_df.empty is False
|
308 |
else leaderboard_df
|
309 |
),
|
310 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value + benchmark_columns,
|
311 |
datatype=TYPES,
|
312 |
elem_id="leaderboard-table",
|
313 |
interactive=False,
|
|
|
339 |
demo.load(load_query, inputs=[], outputs=[search_bar])
|
340 |
|
341 |
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size]:
|
342 |
+
selector.change(
|
343 |
update_table,
|
344 |
[
|
345 |
hidden_leaderboard_table_for_search,
|
backend-cli.py
CHANGED
@@ -17,7 +17,7 @@ from src.backend.manage_requests import EvalRequest
|
|
17 |
from src.leaderboard.read_evals import EvalResult
|
18 |
|
19 |
from src.envs import QUEUE_REPO, RESULTS_REPO, API, DEBUG_QUEUE_REPO, DEBUG_RESULTS_REPO
|
20 |
-
from src.utils import my_snapshot_download, analyze_gpu_stats, parse_nvidia_smi, monitor_gpus
|
21 |
|
22 |
from src.leaderboard.read_evals import get_raw_eval_results
|
23 |
|
@@ -28,6 +28,8 @@ import time
|
|
28 |
import pprint
|
29 |
import logging
|
30 |
|
|
|
|
|
31 |
|
32 |
# Configure the root logger
|
33 |
logging.basicConfig(
|
@@ -42,6 +44,20 @@ eval_logger = logging.getLogger("lm-eval")
|
|
42 |
# Explicitly set the level for 'lm-eval' logger to WARNING
|
43 |
eval_logger.setLevel(logging.WARNING)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def my_set_eval_request(api, eval_request, set_to_status, hf_repo, local_dir):
|
47 |
for i in range(10):
|
@@ -126,9 +142,6 @@ def request_to_result_name(request: EvalRequest) -> str:
|
|
126 |
def process_evaluation(task: Task, eval_request: EvalRequest, limit: Optional[int] = None) -> dict:
|
127 |
batch_size = 1
|
128 |
batch_size = eval_request.batch_size
|
129 |
-
|
130 |
-
if args.debug:
|
131 |
-
RESULTS_REPO = DEBUG_RESULTS_REPO
|
132 |
|
133 |
init_gpu_info = analyze_gpu_stats(parse_nvidia_smi())
|
134 |
# if init_gpu_info['Mem(M)'] > 500:
|
@@ -137,6 +150,12 @@ def process_evaluation(task: Task, eval_request: EvalRequest, limit: Optional[in
|
|
137 |
stop_event = threading.Event()
|
138 |
monitor_thread = threading.Thread(target=monitor_gpus, args=(stop_event, 5, gpu_stats_list))
|
139 |
monitor_thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
try:
|
142 |
results = run_evaluation(
|
@@ -198,6 +217,8 @@ def process_evaluation(task: Task, eval_request: EvalRequest, limit: Optional[in
|
|
198 |
repo_id=RESULTS_REPO,
|
199 |
repo_type="dataset",
|
200 |
)
|
|
|
|
|
201 |
return results
|
202 |
|
203 |
|
@@ -366,21 +387,7 @@ def maybe_refresh_results(thr: int, hard_task_lst: Optional[list[str]] = None) -
|
|
366 |
|
367 |
return False
|
368 |
|
369 |
-
|
370 |
-
def get_gpu_details():
|
371 |
-
gpus = GPUtil.getGPUs()
|
372 |
-
gpu = gpus[0]
|
373 |
-
name = gpu.name.replace(" ", "-")
|
374 |
-
# Convert memory from MB to GB and round to nearest whole number
|
375 |
-
memory_gb = round(gpu.memoryTotal / 1024)
|
376 |
-
memory = f"{memory_gb}GB"
|
377 |
-
formatted_name = f"{name}-{memory}"
|
378 |
-
return formatted_name
|
379 |
-
|
380 |
def process_pending_requests() -> bool:
|
381 |
-
if args.debug:
|
382 |
-
QUEUE_REPO = DEBUG_QUEUE_REPO
|
383 |
-
|
384 |
sanity_checks()
|
385 |
print("Processing pending requests")
|
386 |
current_pending_status = [PENDING_STATUS]
|
@@ -443,13 +450,14 @@ def get_args():
|
|
443 |
parser = argparse.ArgumentParser(description="Run the backend")
|
444 |
parser.add_argument("--debug", action="store_true", help="Run in debug mode")
|
445 |
# debug parameters
|
446 |
-
parser.add_argument("--task", type=str, default="selfcheckgpt,mmlu", help="Task to debug")
|
447 |
parser.add_argument("--model", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1,mistralai/Mixtral-8x7B-v0.1", help="Model to debug")
|
448 |
parser.add_argument("--precision", type=str, default="float32,float16,8bit,4bit", help="Precision to debug")
|
449 |
parser.add_argument("--inference-framework", type=str, default="hf-chat", help="Inference framework to debug")
|
450 |
parser.add_argument("--limit", type=int, default=None, help="Limit for the number of samples")
|
451 |
parser.add_argument("--gpu-type", type=str, default="NVIDIA-A100-PCIe-80GB",
|
452 |
help="GPU type. NVIDIA-A100-PCIe-80GB; NVIDIA-RTX-A5000-24GB; NVIDIA-H100-PCIe-80GB")
|
|
|
453 |
return parser.parse_args()
|
454 |
|
455 |
|
@@ -457,7 +465,7 @@ if __name__ == "__main__":
|
|
457 |
args = get_args()
|
458 |
local_debug = args.debug
|
459 |
# debug specific task by ping
|
460 |
-
if local_debug:
|
461 |
# debug_model_names = [args.model] # Use model from arguments
|
462 |
# debug_task_name = [args.task] # Use task from arguments
|
463 |
debug_model_names = args.model.split(",")
|
@@ -465,48 +473,67 @@ if __name__ == "__main__":
|
|
465 |
precisions = args.precision.split(",")
|
466 |
print(f"debug_model_names: {debug_model_names}, debug_task_name: {debug_task_name}, precisions: {precisions}")
|
467 |
task_lst = TASKS_HARNESS.copy()
|
|
|
468 |
for precision in precisions:
|
469 |
for debug_model_name in debug_model_names:
|
470 |
for task in task_lst:
|
471 |
task_name = task.benchmark
|
472 |
if task_name not in debug_task_name:
|
473 |
continue
|
474 |
-
try:
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
except Exception as e:
|
490 |
-
|
491 |
-
|
|
|
|
|
492 |
while True:
|
493 |
res = False
|
494 |
-
|
495 |
# if random.randint(0, 10) == 0:
|
496 |
res = process_pending_requests()
|
497 |
print(f"waiting for 60 seconds")
|
498 |
time.sleep(60)
|
499 |
-
|
500 |
# if res is False:
|
501 |
# if random.randint(0, 5) == 0:
|
502 |
# res = maybe_refresh_results(100)
|
503 |
# else:
|
504 |
# res = process_finished_requests(100)
|
505 |
-
|
506 |
# time.sleep(60)
|
507 |
-
|
508 |
# if res is False:
|
509 |
# if random.randint(0, 5) == 0:
|
510 |
# res = maybe_refresh_results(0)
|
511 |
# else:
|
512 |
# res = process_finished_requests(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
from src.leaderboard.read_evals import EvalResult
|
18 |
|
19 |
from src.envs import QUEUE_REPO, RESULTS_REPO, API, DEBUG_QUEUE_REPO, DEBUG_RESULTS_REPO
|
20 |
+
from src.utils import my_snapshot_download, analyze_gpu_stats, parse_nvidia_smi, monitor_gpus, get_gpu_details
|
21 |
|
22 |
from src.leaderboard.read_evals import get_raw_eval_results
|
23 |
|
|
|
28 |
import pprint
|
29 |
import logging
|
30 |
|
31 |
+
from lm_eval.filters.extraction import RegexFilter
|
32 |
+
|
33 |
|
34 |
# Configure the root logger
|
35 |
logging.basicConfig(
|
|
|
44 |
# Explicitly set the level for 'lm-eval' logger to WARNING
|
45 |
eval_logger.setLevel(logging.WARNING)
|
46 |
|
47 |
+
def tuple_input_decorator(func):
|
48 |
+
def wrapper(self, resps, docs):
|
49 |
+
stripped_resps = [[resp_data[0] for resp_data in group] for group in resps]
|
50 |
+
|
51 |
+
filtered_resps = func(self, stripped_resps, docs)
|
52 |
+
|
53 |
+
combined_resps = []
|
54 |
+
for original_group, new_group in zip(resps, filtered_resps):
|
55 |
+
combined_group = [(new_resp,) + rest_of_data[1:] for new_resp, rest_of_data in zip(new_group, original_group)]
|
56 |
+
combined_resps.append(combined_group)
|
57 |
+
|
58 |
+
return combined_resps
|
59 |
+
return wrapper
|
60 |
+
|
61 |
|
62 |
def my_set_eval_request(api, eval_request, set_to_status, hf_repo, local_dir):
|
63 |
for i in range(10):
|
|
|
142 |
def process_evaluation(task: Task, eval_request: EvalRequest, limit: Optional[int] = None) -> dict:
|
143 |
batch_size = 1
|
144 |
batch_size = eval_request.batch_size
|
|
|
|
|
|
|
145 |
|
146 |
init_gpu_info = analyze_gpu_stats(parse_nvidia_smi())
|
147 |
# if init_gpu_info['Mem(M)'] > 500:
|
|
|
150 |
stop_event = threading.Event()
|
151 |
monitor_thread = threading.Thread(target=monitor_gpus, args=(stop_event, 5, gpu_stats_list))
|
152 |
monitor_thread.start()
|
153 |
+
|
154 |
+
original_apply = RegexFilter.apply
|
155 |
+
if task.benchmark in ["gsm8k", "gsm8k_cot", "gsm8k_cot_self_consistency", "gsm8k_custom"]:
|
156 |
+
RegexFilter.apply = tuple_input_decorator(RegexFilter.apply)
|
157 |
+
else:
|
158 |
+
RegexFilter.apply = original_apply
|
159 |
|
160 |
try:
|
161 |
results = run_evaluation(
|
|
|
217 |
repo_id=RESULTS_REPO,
|
218 |
repo_type="dataset",
|
219 |
)
|
220 |
+
|
221 |
+
RegexFilter.apply = original_apply
|
222 |
return results
|
223 |
|
224 |
|
|
|
387 |
|
388 |
return False
|
389 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
def process_pending_requests() -> bool:
|
|
|
|
|
|
|
391 |
sanity_checks()
|
392 |
print("Processing pending requests")
|
393 |
current_pending_status = [PENDING_STATUS]
|
|
|
450 |
parser = argparse.ArgumentParser(description="Run the backend")
|
451 |
parser.add_argument("--debug", action="store_true", help="Run in debug mode")
|
452 |
# debug parameters
|
453 |
+
parser.add_argument("--task", type=str, default="selfcheckgpt,mmlu, gsm8k", help="Task to debug")
|
454 |
parser.add_argument("--model", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1,mistralai/Mixtral-8x7B-v0.1", help="Model to debug")
|
455 |
parser.add_argument("--precision", type=str, default="float32,float16,8bit,4bit", help="Precision to debug")
|
456 |
parser.add_argument("--inference-framework", type=str, default="hf-chat", help="Inference framework to debug")
|
457 |
parser.add_argument("--limit", type=int, default=None, help="Limit for the number of samples")
|
458 |
parser.add_argument("--gpu-type", type=str, default="NVIDIA-A100-PCIe-80GB",
|
459 |
help="GPU type. NVIDIA-A100-PCIe-80GB; NVIDIA-RTX-A5000-24GB; NVIDIA-H100-PCIe-80GB")
|
460 |
+
parser.add_argument("--debug_repo", action="store_true", help="Use debug repo")
|
461 |
return parser.parse_args()
|
462 |
|
463 |
|
|
|
465 |
args = get_args()
|
466 |
local_debug = args.debug
|
467 |
# debug specific task by ping
|
468 |
+
if local_debug and not args.debug_repo:
|
469 |
# debug_model_names = [args.model] # Use model from arguments
|
470 |
# debug_task_name = [args.task] # Use task from arguments
|
471 |
debug_model_names = args.model.split(",")
|
|
|
473 |
precisions = args.precision.split(",")
|
474 |
print(f"debug_model_names: {debug_model_names}, debug_task_name: {debug_task_name}, precisions: {precisions}")
|
475 |
task_lst = TASKS_HARNESS.copy()
|
476 |
+
RESULTS_REPO = DEBUG_RESULTS_REPO
|
477 |
for precision in precisions:
|
478 |
for debug_model_name in debug_model_names:
|
479 |
for task in task_lst:
|
480 |
task_name = task.benchmark
|
481 |
if task_name not in debug_task_name:
|
482 |
continue
|
483 |
+
# try:
|
484 |
+
eval_request = EvalRequest(
|
485 |
+
model=debug_model_name,
|
486 |
+
private=False,
|
487 |
+
status="",
|
488 |
+
json_filepath="",
|
489 |
+
precision=precision, # Use precision from arguments
|
490 |
+
inference_framework=args.inference_framework, # Use inference framework from arguments
|
491 |
+
gpu_type=args.gpu_type
|
492 |
+
)
|
493 |
+
curr_gpu_type = get_gpu_details()
|
494 |
+
if eval_request.gpu_type != curr_gpu_type:
|
495 |
+
print(f"GPU type mismatch: {eval_request.gpu_type} vs {curr_gpu_type}")
|
496 |
+
raise Exception("GPU type mismatch")
|
497 |
+
results = process_evaluation(task, eval_request, limit=args.limit)
|
498 |
+
# except Exception as e:
|
499 |
+
# print(f"debug running error: {e}")
|
500 |
+
elif local_debug and args.debug_repo:
|
501 |
+
QUEUE_REPO = DEBUG_QUEUE_REPO
|
502 |
+
RESULTS_REPO = DEBUG_RESULTS_REPO
|
503 |
while True:
|
504 |
res = False
|
|
|
505 |
# if random.randint(0, 10) == 0:
|
506 |
res = process_pending_requests()
|
507 |
print(f"waiting for 60 seconds")
|
508 |
time.sleep(60)
|
|
|
509 |
# if res is False:
|
510 |
# if random.randint(0, 5) == 0:
|
511 |
# res = maybe_refresh_results(100)
|
512 |
# else:
|
513 |
# res = process_finished_requests(100)
|
|
|
514 |
# time.sleep(60)
|
|
|
515 |
# if res is False:
|
516 |
# if random.randint(0, 5) == 0:
|
517 |
# res = maybe_refresh_results(0)
|
518 |
# else:
|
519 |
# res = process_finished_requests(0)
|
520 |
+
elif not local_debug and not args.debug_repo:
|
521 |
+
while True:
|
522 |
+
res = False
|
523 |
+
# if random.randint(0, 10) == 0:
|
524 |
+
res = process_pending_requests()
|
525 |
+
print(f"waiting for 60 seconds")
|
526 |
+
time.sleep(60)
|
527 |
+
# if res is False:
|
528 |
+
# if random.randint(0, 5) == 0:
|
529 |
+
# res = maybe_refresh_results(100)
|
530 |
+
# else:
|
531 |
+
# res = process_finished_requests(100)
|
532 |
+
# time.sleep(60)
|
533 |
+
# if res is False:
|
534 |
+
# if random.randint(0, 5) == 0:
|
535 |
+
# res = maybe_refresh_results(0)
|
536 |
+
# else:
|
537 |
+
# res = process_finished_requests(0)
|
538 |
+
else:
|
539 |
+
raise Exception("Cannot use debug_repo without local debug flag")
|
requirements.txt
CHANGED
@@ -30,4 +30,5 @@ evaluate
|
|
30 |
spacy==3.7.4
|
31 |
selfcheckgpt
|
32 |
immutabledict
|
33 |
-
gputil
|
|
|
|
30 |
spacy==3.7.4
|
31 |
selfcheckgpt
|
32 |
immutabledict
|
33 |
+
gputil
|
34 |
+
bitsandbytes
|
src/backend/envs.py
CHANGED
@@ -57,6 +57,7 @@ class Tasks(Enum):
|
|
57 |
|
58 |
# task20 = Task("race", "acc", "RACE", 0)
|
59 |
task21 = Task("mmlu", "acc", "MMLU", 5)
|
|
|
60 |
|
61 |
|
62 |
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
|
|
57 |
|
58 |
# task20 = Task("race", "acc", "RACE", 0)
|
59 |
task21 = Task("mmlu", "acc", "MMLU", 5)
|
60 |
+
task22 = Task("gsm8k_custom", "em", "GSM8K", 5)
|
61 |
|
62 |
|
63 |
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
src/backend/hflm_with_measurement.py
CHANGED
@@ -37,6 +37,9 @@ from lm_eval.models.utils import (
|
|
37 |
stop_sequences_criteria,
|
38 |
)
|
39 |
from lm_eval.models.huggingface import HFLM
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
class StopWatch(TextStreamer):
|
@@ -67,6 +70,9 @@ class StopWatch(TextStreamer):
|
|
67 |
class HFLMWithMeasurement(HFLM):
|
68 |
def __init__(self, **kwargs):
|
69 |
super().__init__(**kwargs)
|
|
|
|
|
|
|
70 |
|
71 |
def _loglikelihood_tokens(
|
72 |
self,
|
@@ -288,13 +294,15 @@ class HFLMWithMeasurement(HFLM):
|
|
288 |
|
289 |
return re_ord.get_original(res)
|
290 |
|
291 |
-
def _model_generate(self, context,
|
292 |
# temperature = 0.0 if not set
|
293 |
# if do_sample is false and temp==0.0:
|
294 |
# remove temperature, as do_sample=False takes care of this
|
295 |
# and we don't want a warning from HF
|
296 |
generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
|
297 |
do_sample = generation_kwargs.get("do_sample", None)
|
|
|
|
|
298 |
|
299 |
# The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
|
300 |
if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
|
@@ -302,7 +310,21 @@ class HFLMWithMeasurement(HFLM):
|
|
302 |
|
303 |
if do_sample is False and generation_kwargs.get("temperature") == 0.0:
|
304 |
generation_kwargs.pop("temperature")
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
stopping_criteria = stop_sequences_criteria(
|
307 |
self.tokenizer, stop, context.shape[1], context.shape[0]
|
308 |
)
|
@@ -310,7 +332,7 @@ class HFLMWithMeasurement(HFLM):
|
|
310 |
start = time()
|
311 |
res = self.model.generate(
|
312 |
input_ids=context,
|
313 |
-
|
314 |
stopping_criteria=stopping_criteria,
|
315 |
pad_token_id=self.tokenizer.pad_token_id,
|
316 |
use_cache=True,
|
@@ -321,12 +343,68 @@ class HFLMWithMeasurement(HFLM):
|
|
321 |
|
322 |
batch_size = context.shape[0]
|
323 |
output_length = stop_watch.decoding_iterations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
end_to_end_time = (end - start) / batch_size
|
326 |
prefilling_time = stop_watch.prefilling_time / batch_size
|
327 |
decoding_time = stop_watch.decoding_time / batch_size
|
328 |
token_per_sec = output_length / decoding_time
|
329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
def generate_until(
|
332 |
self, requests: List[Instance], disable_tqdm: bool = False
|
@@ -403,11 +481,19 @@ class HFLMWithMeasurement(HFLM):
|
|
403 |
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
|
404 |
)
|
405 |
# add EOS token to stop sequences
|
406 |
-
eos =
|
407 |
if not until:
|
408 |
until = [eos]
|
409 |
else:
|
410 |
until.append(eos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
if "max_gen_toks" in kwargs.keys():
|
412 |
max_gen_toks = kwargs.pop("max_gen_toks")
|
413 |
else:
|
@@ -427,14 +513,16 @@ class HFLMWithMeasurement(HFLM):
|
|
427 |
left_truncate_len=max_ctx_len,
|
428 |
truncation=self.truncation,
|
429 |
)
|
|
|
|
|
430 |
context_enc = context_enc.to(self.device)
|
431 |
attn_masks = attn_masks.to(self.device)
|
432 |
|
433 |
-
if "
|
434 |
-
kwargs["
|
435 |
|
436 |
# perform batched generation
|
437 |
-
cont, end_to_end_time, prefilling_time, token_per_sec = self._model_generate(
|
438 |
context=context_enc,
|
439 |
attention_mask=attn_masks,
|
440 |
stop=until,
|
@@ -445,18 +533,21 @@ class HFLMWithMeasurement(HFLM):
|
|
445 |
for cont_toks, context in zip(cont_toks_list, contexts):
|
446 |
# discard context + left-padding toks if using causal decoder-only LM
|
447 |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
|
|
448 |
cont_toks = cont_toks[context_enc.shape[1] :]
|
449 |
-
|
450 |
s = self.tok_decode(cont_toks)
|
451 |
|
452 |
-
# use secondary stop seqs to cut off should-have-been-stopped content post-hoc
|
|
|
453 |
for term in until:
|
454 |
if len(term) > 0:
|
455 |
# ignore '' separator,
|
456 |
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
|
457 |
s = s.split(term)[0]
|
458 |
-
|
459 |
-
|
|
|
460 |
|
461 |
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
|
462 |
pbar.update(1)
|
|
|
37 |
stop_sequences_criteria,
|
38 |
)
|
39 |
from lm_eval.models.huggingface import HFLM
|
40 |
+
from src.utils import get_gpu_number, get_gpu_details, get_peak_bw, transfer_precision2bytes, get_peak_flops
|
41 |
+
from src.submission.check_validity import get_model_size
|
42 |
+
from src.envs import API
|
43 |
|
44 |
|
45 |
class StopWatch(TextStreamer):
|
|
|
70 |
class HFLMWithMeasurement(HFLM):
|
71 |
def __init__(self, **kwargs):
|
72 |
super().__init__(**kwargs)
|
73 |
+
self.pretrained = kwargs.get("pretrained", None)
|
74 |
+
self.revision = kwargs.get("revision", None)
|
75 |
+
self.precision = kwargs.get("dtype", None)
|
76 |
|
77 |
def _loglikelihood_tokens(
|
78 |
self,
|
|
|
294 |
|
295 |
return re_ord.get_original(res)
|
296 |
|
297 |
+
def _model_generate(self, context, max_tokens, stop, **generation_kwargs):
|
298 |
# temperature = 0.0 if not set
|
299 |
# if do_sample is false and temp==0.0:
|
300 |
# remove temperature, as do_sample=False takes care of this
|
301 |
# and we don't want a warning from HF
|
302 |
generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
|
303 |
do_sample = generation_kwargs.get("do_sample", None)
|
304 |
+
|
305 |
+
# is_gsm8k = generation_kwargs.get("is_gsm8k", False)
|
306 |
|
307 |
# The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
|
308 |
if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
|
|
|
310 |
|
311 |
if do_sample is False and generation_kwargs.get("temperature") == 0.0:
|
312 |
generation_kwargs.pop("temperature")
|
313 |
+
|
314 |
+
# if is_gsm8k:
|
315 |
+
# generation_kwargs.pop("is_gsm8k")
|
316 |
+
|
317 |
+
context_length = context.shape[1]
|
318 |
+
model_config = self.model.config
|
319 |
+
|
320 |
+
if not self.precision:
|
321 |
+
if model_config.quantization_config._load_in_4bit:
|
322 |
+
self.precision = "4bit"
|
323 |
+
elif model_config.quantization_config._load_in_8bit:
|
324 |
+
self.precision = "8bit"
|
325 |
+
else:
|
326 |
+
raise ValueError("Unknown precision")
|
327 |
+
|
328 |
stopping_criteria = stop_sequences_criteria(
|
329 |
self.tokenizer, stop, context.shape[1], context.shape[0]
|
330 |
)
|
|
|
332 |
start = time()
|
333 |
res = self.model.generate(
|
334 |
input_ids=context,
|
335 |
+
max_new_tokens=max_tokens,
|
336 |
stopping_criteria=stopping_criteria,
|
337 |
pad_token_id=self.tokenizer.pad_token_id,
|
338 |
use_cache=True,
|
|
|
343 |
|
344 |
batch_size = context.shape[0]
|
345 |
output_length = stop_watch.decoding_iterations
|
346 |
+
|
347 |
+
precision_bytes = transfer_precision2bytes(self.precision)
|
348 |
+
|
349 |
+
model_info = API.model_info(repo_id=self.pretrained, revision=self.revision)
|
350 |
+
model_size_param = get_model_size(model_info=model_info, precision=self.precision)
|
351 |
+
|
352 |
+
n_layers = model_config.num_hidden_layers if hasattr(model_config, "num_hidden_layers") else model_config.num_layers
|
353 |
+
d_model = model_config.hidden_size if hasattr(model_config, "hidden_size") else model_config.d_model
|
354 |
+
|
355 |
+
if hasattr(model_config, "num_experts_per_tok"):
|
356 |
+
n_experts_per_tok = model_config.num_experts_per_tok
|
357 |
+
elif hasattr(model_config, "num_selected_experts"):
|
358 |
+
n_experts_per_tok = model_config.num_selected_experts
|
359 |
+
else:
|
360 |
+
n_experts_per_tok = 1
|
361 |
+
|
362 |
+
if hasattr(model_config, "ffn_dim"):
|
363 |
+
d_ff = model_config.ffn_dim
|
364 |
+
elif hasattr(model_config, "intermediate_size"):
|
365 |
+
d_ff = model_config.intermediate_size
|
366 |
+
elif hasattr(model_config, "d_ff"):
|
367 |
+
d_ff = model_config.d_ff
|
368 |
+
else:
|
369 |
+
raise ValueError("Unknown ffn dim model configuration")
|
370 |
+
|
371 |
+
if hasattr(model_config, "num_local_experts"):
|
372 |
+
num_experts = model_config.num_local_experts
|
373 |
+
elif hasattr(model_config, "num_experts"):
|
374 |
+
num_experts = model_config.num_experts
|
375 |
+
else:
|
376 |
+
num_experts = 1
|
377 |
+
|
378 |
+
ffn_params = n_layers * d_ff * 2 * d_model
|
379 |
+
|
380 |
+
shared_params = model_size_param * 1e9 - num_experts * ffn_params
|
381 |
+
|
382 |
+
model_size = shared_params + n_experts_per_tok * ffn_params
|
383 |
+
|
384 |
+
per_token_kv_size = 2 * n_layers * d_model * precision_bytes
|
385 |
+
|
386 |
+
peak_bw_single = get_peak_bw(get_gpu_details())
|
387 |
+
peak_bw = peak_bw_single * get_gpu_number()
|
388 |
+
|
389 |
+
kv_size = (output_length - 1) * per_token_kv_size / 1e9
|
390 |
|
391 |
end_to_end_time = (end - start) / batch_size
|
392 |
prefilling_time = stop_watch.prefilling_time / batch_size
|
393 |
decoding_time = stop_watch.decoding_time / batch_size
|
394 |
token_per_sec = output_length / decoding_time
|
395 |
+
ach_mem_bw = (model_size * precision_bytes / 1e9 + kv_size) * token_per_sec
|
396 |
+
|
397 |
+
flops_per_token = 2 * model_size + 2 * n_layers * context_length * d_model
|
398 |
+
peak_flops_single = get_peak_flops(get_gpu_details(), self.precision)
|
399 |
+
peak_flops = peak_flops_single * get_gpu_number()
|
400 |
+
|
401 |
+
## TODO only support llama-type decoder only models and moe models of switch transformer and mixtrial
|
402 |
+
mfu = token_per_sec * flops_per_token / peak_flops
|
403 |
+
mbu = ach_mem_bw / peak_bw
|
404 |
+
|
405 |
+
# print(f"mfu: {mfu}, mbu: {mbu}")
|
406 |
+
|
407 |
+
return res, end_to_end_time, prefilling_time, token_per_sec, mfu, mbu
|
408 |
|
409 |
def generate_until(
|
410 |
self, requests: List[Instance], disable_tqdm: bool = False
|
|
|
481 |
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
|
482 |
)
|
483 |
# add EOS token to stop sequences
|
484 |
+
eos = "<|eot_id|>"
|
485 |
if not until:
|
486 |
until = [eos]
|
487 |
else:
|
488 |
until.append(eos)
|
489 |
+
|
490 |
+
# is_gsm8k = kwargs.get("is_gsm8k", False)
|
491 |
+
# if is_gsm8k:
|
492 |
+
# until = ["Question:", "Question", "</s>"]
|
493 |
+
# eos_ids = [self.tokenizer.eos_token_id,
|
494 |
+
# self.tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
495 |
+
|
496 |
+
|
497 |
if "max_gen_toks" in kwargs.keys():
|
498 |
max_gen_toks = kwargs.pop("max_gen_toks")
|
499 |
else:
|
|
|
513 |
left_truncate_len=max_ctx_len,
|
514 |
truncation=self.truncation,
|
515 |
)
|
516 |
+
|
517 |
+
# print("context: ", self.tok_decode(context_enc[0]))
|
518 |
context_enc = context_enc.to(self.device)
|
519 |
attn_masks = attn_masks.to(self.device)
|
520 |
|
521 |
+
if "max_tokens" not in kwargs:
|
522 |
+
kwargs["max_tokens"] = max_gen_toks
|
523 |
|
524 |
# perform batched generation
|
525 |
+
cont, end_to_end_time, prefilling_time, token_per_sec, mfu, mbu = self._model_generate(
|
526 |
context=context_enc,
|
527 |
attention_mask=attn_masks,
|
528 |
stop=until,
|
|
|
533 |
for cont_toks, context in zip(cont_toks_list, contexts):
|
534 |
# discard context + left-padding toks if using causal decoder-only LM
|
535 |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
536 |
+
# print("After Generation: ", self.tok_decode(cont_toks))
|
537 |
cont_toks = cont_toks[context_enc.shape[1] :]
|
538 |
+
|
539 |
s = self.tok_decode(cont_toks)
|
540 |
|
541 |
+
# # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
|
542 |
+
# if not is_gsm8k:
|
543 |
for term in until:
|
544 |
if len(term) > 0:
|
545 |
# ignore '' separator,
|
546 |
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
|
547 |
s = s.split(term)[0]
|
548 |
+
|
549 |
+
# print(s)
|
550 |
+
res.append((s, end_to_end_time, prefilling_time, token_per_sec, mfu, mbu))
|
551 |
|
552 |
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
|
553 |
pbar.update(1)
|
src/backend/run_eval_suite.py
CHANGED
@@ -17,12 +17,16 @@ def process_results_decorator(func):
|
|
17 |
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
18 |
prefilling_time = sum([r[2] for r in results]) / len(results)
|
19 |
decoding_throughput = sum([r[3] for r in results]) / len(results)
|
|
|
|
|
20 |
# print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
|
21 |
|
22 |
result_dict = func(self, doc, processed_results, *args, **kwargs)
|
23 |
result_dict["end_to_end_time"] = end_to_end_time
|
24 |
result_dict["prefilling_time"] = prefilling_time
|
25 |
result_dict["decoding_throughput"] = decoding_throughput
|
|
|
|
|
26 |
return result_dict
|
27 |
return wrapper
|
28 |
ConfigurableTask.process_results = process_results_decorator(orig_process_results)
|
@@ -33,6 +37,8 @@ def aggregation_decorator(func):
|
|
33 |
aggregation_list["end_to_end_time"] = mean
|
34 |
aggregation_list["prefilling_time"] = mean
|
35 |
aggregation_list["decoding_throughput"] = mean
|
|
|
|
|
36 |
return aggregation_list
|
37 |
return wrapper
|
38 |
ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
|
@@ -43,6 +49,8 @@ def higher_is_better_decorator(func):
|
|
43 |
higher_is_better_dict["end_to_end_time"] = False
|
44 |
higher_is_better_dict["prefilling_time"] = False
|
45 |
higher_is_better_dict["decoding_throughput"] = True
|
|
|
|
|
46 |
return higher_is_better_dict
|
47 |
return wrapper
|
48 |
ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
|
|
|
17 |
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
18 |
prefilling_time = sum([r[2] for r in results]) / len(results)
|
19 |
decoding_throughput = sum([r[3] for r in results]) / len(results)
|
20 |
+
mfu = sum([r[4] for r in results]) / len(results)
|
21 |
+
mbu = sum([r[5] for r in results]) / len(results)
|
22 |
# print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
|
23 |
|
24 |
result_dict = func(self, doc, processed_results, *args, **kwargs)
|
25 |
result_dict["end_to_end_time"] = end_to_end_time
|
26 |
result_dict["prefilling_time"] = prefilling_time
|
27 |
result_dict["decoding_throughput"] = decoding_throughput
|
28 |
+
result_dict["mfu"] = mfu * 100
|
29 |
+
result_dict["mbu"] = mbu * 100
|
30 |
return result_dict
|
31 |
return wrapper
|
32 |
ConfigurableTask.process_results = process_results_decorator(orig_process_results)
|
|
|
37 |
aggregation_list["end_to_end_time"] = mean
|
38 |
aggregation_list["prefilling_time"] = mean
|
39 |
aggregation_list["decoding_throughput"] = mean
|
40 |
+
aggregation_list["mfu"] = mean
|
41 |
+
aggregation_list["mbu"] = mean
|
42 |
return aggregation_list
|
43 |
return wrapper
|
44 |
ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
|
|
|
49 |
higher_is_better_dict["end_to_end_time"] = False
|
50 |
higher_is_better_dict["prefilling_time"] = False
|
51 |
higher_is_better_dict["decoding_throughput"] = True
|
52 |
+
higher_is_better_dict["mfu"] = True
|
53 |
+
higher_is_better_dict["mbu"] = True
|
54 |
return higher_is_better_dict
|
55 |
return wrapper
|
56 |
ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
|
src/backend/tasks/gsm8k/gsm8k-custom.yaml
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- math_word_problems
|
3 |
+
task: gsm8k_custom
|
4 |
+
dataset_path: gsm8k
|
5 |
+
dataset_name: main
|
6 |
+
output_type: generate_until
|
7 |
+
training_split: train
|
8 |
+
fewshot_split: train
|
9 |
+
test_split: test
|
10 |
+
doc_to_text: "Question: {{question}}\nAnswer:"
|
11 |
+
doc_to_target: "{{answer}}" #" {{answer.split('### ')[-1].rstrip()}}"
|
12 |
+
metric_list:
|
13 |
+
- metric: exact_match
|
14 |
+
aggregation: mean
|
15 |
+
higher_is_better: true
|
16 |
+
ignore_case: true
|
17 |
+
ignore_punctuation: false
|
18 |
+
regexes_to_ignore:
|
19 |
+
- ","
|
20 |
+
- "\\$"
|
21 |
+
- "(?s).*#### "
|
22 |
+
- "\\.$"
|
23 |
+
generation_kwargs:
|
24 |
+
until:
|
25 |
+
- "Question:"
|
26 |
+
- "Question"
|
27 |
+
- "</s>"
|
28 |
+
- "<|im_end|>"
|
29 |
+
do_sample: false
|
30 |
+
temperature: 0.0
|
31 |
+
# is_gsm8k: true
|
32 |
+
repeats: 1
|
33 |
+
num_fewshot: 5
|
34 |
+
filter_list:
|
35 |
+
- name: "strict-match"
|
36 |
+
filter:
|
37 |
+
- function: "regex"
|
38 |
+
regex_pattern: "#### (\\-?[0-9\\.\\,]+)"
|
39 |
+
- function: "take_first"
|
40 |
+
- name: "flexible-extract"
|
41 |
+
filter:
|
42 |
+
- function: "regex"
|
43 |
+
group_select: -1
|
44 |
+
regex_pattern: "(-?[$0-9.,]{2,})|(-?[0-9]+)"
|
45 |
+
- function: "take_first"
|
46 |
+
metadata:
|
47 |
+
version: 3.0
|
src/backend/tasks/measurement_task_utils.py
CHANGED
@@ -12,6 +12,9 @@ def process_results_decorator(func):
|
|
12 |
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
13 |
prefilling_time = sum([r[2] for r in results]) / len(results)
|
14 |
decoding_throughput = sum([r[3] for r in results]) / len(results)
|
|
|
|
|
|
|
15 |
# print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
|
16 |
|
17 |
# Now call the original process_results with the processed results
|
@@ -19,6 +22,8 @@ def process_results_decorator(func):
|
|
19 |
result_dict["end_to_end_time"] = end_to_end_time
|
20 |
result_dict["prefilling_time"] = prefilling_time
|
21 |
result_dict["decoding_throughput"] = decoding_throughput
|
|
|
|
|
22 |
return result_dict
|
23 |
return wrapper
|
24 |
|
@@ -30,6 +35,8 @@ def aggregation_decorator(func):
|
|
30 |
aggregation_list["end_to_end_time"] = mean
|
31 |
aggregation_list["prefilling_time"] = mean
|
32 |
aggregation_list["decoding_throughput"] = mean
|
|
|
|
|
33 |
return aggregation_list
|
34 |
return wrapper
|
35 |
|
@@ -41,6 +48,8 @@ def higher_is_better_decorator(func):
|
|
41 |
higher_is_better_dict["end_to_end_time"] = False
|
42 |
higher_is_better_dict["prefilling_time"] = False
|
43 |
higher_is_better_dict["decoding_throughput"] = True
|
|
|
|
|
44 |
return higher_is_better_dict
|
45 |
return wrapper
|
46 |
|
|
|
12 |
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
13 |
prefilling_time = sum([r[2] for r in results]) / len(results)
|
14 |
decoding_throughput = sum([r[3] for r in results]) / len(results)
|
15 |
+
mfu = sum([r[4] for r in results]) / len(results)
|
16 |
+
mbu = sum([r[5] for r in results]) / len(results)
|
17 |
+
|
18 |
# print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
|
19 |
|
20 |
# Now call the original process_results with the processed results
|
|
|
22 |
result_dict["end_to_end_time"] = end_to_end_time
|
23 |
result_dict["prefilling_time"] = prefilling_time
|
24 |
result_dict["decoding_throughput"] = decoding_throughput
|
25 |
+
result_dict["mfu"] = mfu
|
26 |
+
result_dict["mbu"] = mbu
|
27 |
return result_dict
|
28 |
return wrapper
|
29 |
|
|
|
35 |
aggregation_list["end_to_end_time"] = mean
|
36 |
aggregation_list["prefilling_time"] = mean
|
37 |
aggregation_list["decoding_throughput"] = mean
|
38 |
+
aggregation_list["mfu"] = mean
|
39 |
+
aggregation_list["mbu"] = mean
|
40 |
return aggregation_list
|
41 |
return wrapper
|
42 |
|
|
|
48 |
higher_is_better_dict["end_to_end_time"] = False
|
49 |
higher_is_better_dict["prefilling_time"] = False
|
50 |
higher_is_better_dict["decoding_throughput"] = True
|
51 |
+
higher_is_better_dict["mfu"] = True
|
52 |
+
higher_is_better_dict["mbu"] = True
|
53 |
return higher_is_better_dict
|
54 |
return wrapper
|
55 |
|
src/display/about.py
CHANGED
@@ -3,7 +3,8 @@ from src.display.utils import ModelType
|
|
3 |
TITLE = """<h1 align="center" id="space-title">OPEN-MOE-LLM-LEADERBOARD</h1>"""
|
4 |
|
5 |
INTRODUCTION_TEXT = """
|
6 |
-
The OPEN-MOE-LLM-LEADERBOARD is specifically designed to assess the performance and efficiency of various Mixture of Experts (MoE) Large Language Models (LLMs).
|
|
|
7 |
|
8 |
The OPEN-MOE-LLM-LEADERBOARD includes generation and multiple choice tasks to measure the performance and efficiency of MOE LLMs.
|
9 |
|
@@ -20,6 +21,15 @@ Columns and Metrics:
|
|
20 |
- Precision: The precison of used model.
|
21 |
|
22 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
LLM_BENCHMARKS_TEXT = f"""
|
24 |
|
25 |
"""
|
|
|
3 |
TITLE = """<h1 align="center" id="space-title">OPEN-MOE-LLM-LEADERBOARD</h1>"""
|
4 |
|
5 |
INTRODUCTION_TEXT = """
|
6 |
+
The OPEN-MOE-LLM-LEADERBOARD is specifically designed to assess the performance and efficiency of various Mixture of Experts (MoE) Large Language Models (LLMs).
|
7 |
+
This initiative, driven by the open-source community, aims to comprehensively evaluate these advanced MoE LLMs.
|
8 |
|
9 |
The OPEN-MOE-LLM-LEADERBOARD includes generation and multiple choice tasks to measure the performance and efficiency of MOE LLMs.
|
10 |
|
|
|
21 |
- Precision: The precison of used model.
|
22 |
|
23 |
"""
|
24 |
+
|
25 |
+
ACKNOWLEDGEMENT_TEXT = """
|
26 |
+
<div>
|
27 |
+
<h4>Acknowledgements</h4>
|
28 |
+
{image_html}
|
29 |
+
<p>We express our sincere gratitude to <a href="https://netmind.ai/home">NetMind.AI</a> for their generous donation of GPUs, which plays a crucial role in ensuring the continuous operation of our Leaderboard.</p>
|
30 |
+
</div>
|
31 |
+
"""
|
32 |
+
|
33 |
LLM_BENCHMARKS_TEXT = f"""
|
34 |
|
35 |
"""
|
src/display/imgs/Netmind.AI_LOGO.jpg
ADDED
src/display/utils.py
CHANGED
@@ -18,12 +18,16 @@ GPU_Power = 'Power(W)'
|
|
18 |
GPU_Mem = 'Mem(G)'
|
19 |
GPU_Name = "GPU"
|
20 |
GPU_Util = 'Util(%)'
|
|
|
|
|
21 |
BATCH_SIZE = 'bs'
|
22 |
PRECISION = "Precision"
|
23 |
system_metrics_to_name_map = {
|
24 |
"end_to_end_time": f"{E2Es}",
|
25 |
"prefilling_time": f"{PREs}",
|
26 |
"decoding_throughput": f"{TS}",
|
|
|
|
|
27 |
}
|
28 |
|
29 |
gpu_metrics_to_name_map = {
|
@@ -75,6 +79,7 @@ class Tasks(Enum):
|
|
75 |
# # XXX include me back at some point
|
76 |
selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
|
77 |
mmlu = Task("mmlu", "acc", "MMLU") #MMLU/Acc (5-shot)
|
|
|
78 |
|
79 |
|
80 |
# These classes are for user facing column names,
|
@@ -104,16 +109,16 @@ auto_eval_column_dict.append(["inference_framework", ColumnContent, ColumnConten
|
|
104 |
for task in Tasks:
|
105 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
106 |
# System performance metrics
|
107 |
-
auto_eval_column_dict.append([f"{task.name}_end_to_end_time", ColumnContent, ColumnContent(f"{task.value.col_name} {E2Es}", "number", True)])
|
108 |
-
auto_eval_column_dict.append([f"{task.name}_batch_size", ColumnContent, ColumnContent(f"{task.value.col_name} {BATCH_SIZE}", "number", True)])
|
109 |
-
# auto_eval_column_dict.append([f"{task.name}_precision", ColumnContent, ColumnContent(f"{task.value.col_name} {PRECISION}", "str", True)])
|
110 |
-
auto_eval_column_dict.append([f"{task.name}_gpu_mem", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Mem}", "number", True)])
|
111 |
-
auto_eval_column_dict.append([f"{task.name}_gpu", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Name}", "str", True)])
|
112 |
-
auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True)])
|
113 |
if task.value.benchmark in MULTIPLE_CHOICEs:
|
114 |
continue
|
115 |
-
# auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False)])
|
116 |
-
auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True)])
|
117 |
|
118 |
|
119 |
# Model information
|
@@ -242,8 +247,8 @@ class Precision(Enum):
|
|
242 |
|
243 |
|
244 |
# Column selection
|
245 |
-
COLS = [c.name for c in fields(AutoEvalColumn)
|
246 |
-
TYPES = [c.type for c in fields(AutoEvalColumn)
|
247 |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
248 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
249 |
|
|
|
18 |
GPU_Mem = 'Mem(G)'
|
19 |
GPU_Name = "GPU"
|
20 |
GPU_Util = 'Util(%)'
|
21 |
+
MFU = 'MFU(%)'
|
22 |
+
MBU = 'MBU(%)'
|
23 |
BATCH_SIZE = 'bs'
|
24 |
PRECISION = "Precision"
|
25 |
system_metrics_to_name_map = {
|
26 |
"end_to_end_time": f"{E2Es}",
|
27 |
"prefilling_time": f"{PREs}",
|
28 |
"decoding_throughput": f"{TS}",
|
29 |
+
"mfu": f"{MFU}",
|
30 |
+
"mbu": f"{MBU}"
|
31 |
}
|
32 |
|
33 |
gpu_metrics_to_name_map = {
|
|
|
79 |
# # XXX include me back at some point
|
80 |
selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
|
81 |
mmlu = Task("mmlu", "acc", "MMLU") #MMLU/Acc (5-shot)
|
82 |
+
gsm8k = Task("gsm8k_custom", "em", "GSM8K") #GSM8K/EM (8-shot)
|
83 |
|
84 |
|
85 |
# These classes are for user facing column names,
|
|
|
109 |
for task in Tasks:
|
110 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
111 |
# System performance metrics
|
112 |
+
auto_eval_column_dict.append([f"{task.name}_end_to_end_time", ColumnContent, ColumnContent(f"{task.value.col_name} {E2Es}", "number", True, hidden=True)])
|
113 |
+
auto_eval_column_dict.append([f"{task.name}_batch_size", ColumnContent, ColumnContent(f"{task.value.col_name} {BATCH_SIZE}", "number", True, hidden=True)])
|
114 |
+
# auto_eval_column_dict.append([f"{task.name}_precision", ColumnContent, ColumnContent(f"{task.value.col_name} {PRECISION}", "str", True, hidden=True)])
|
115 |
+
auto_eval_column_dict.append([f"{task.name}_gpu_mem", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Mem}", "number", True, hidden=True)])
|
116 |
+
auto_eval_column_dict.append([f"{task.name}_gpu", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Name}", "str", True, hidden=True)])
|
117 |
+
auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True, hidden=True)])
|
118 |
if task.value.benchmark in MULTIPLE_CHOICEs:
|
119 |
continue
|
120 |
+
# auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
|
121 |
+
auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
|
122 |
|
123 |
|
124 |
# Model information
|
|
|
247 |
|
248 |
|
249 |
# Column selection
|
250 |
+
COLS = [c.name for c in fields(AutoEvalColumn)]
|
251 |
+
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
252 |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
253 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
254 |
|
src/submission/check_validity.py
CHANGED
@@ -74,7 +74,7 @@ def is_model_on_hub(
|
|
74 |
|
75 |
|
76 |
def get_model_size(model_info: ModelInfo, precision: str):
|
77 |
-
size_pattern =
|
78 |
try:
|
79 |
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
80 |
except (AttributeError, TypeError):
|
@@ -130,7 +130,8 @@ def already_submitted_models(requested_models_dir: str) -> set[str]:
|
|
130 |
continue
|
131 |
with open(os.path.join(root, file), "r") as f:
|
132 |
info = json.load(f)
|
133 |
-
|
|
|
134 |
|
135 |
# Select organisation
|
136 |
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
|
|
74 |
|
75 |
|
76 |
def get_model_size(model_info: ModelInfo, precision: str):
|
77 |
+
size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
|
78 |
try:
|
79 |
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
80 |
except (AttributeError, TypeError):
|
|
|
130 |
continue
|
131 |
with open(os.path.join(root, file), "r") as f:
|
132 |
info = json.load(f)
|
133 |
+
if not info["status"] == "FINISHED" and not info["status"] == "RUNNING":
|
134 |
+
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}_{info['inference_framework']}_{info['gpu_type']}")
|
135 |
|
136 |
# Select organisation
|
137 |
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
src/utils.py
CHANGED
@@ -3,12 +3,54 @@ from huggingface_hub import snapshot_download
|
|
3 |
import subprocess
|
4 |
import re
|
5 |
import os
|
|
|
6 |
|
7 |
try:
|
8 |
from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
|
9 |
except:
|
10 |
print("local debug: from display.utils")
|
11 |
from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
|
14 |
for i in range(10):
|
@@ -52,11 +94,12 @@ def parse_nvidia_smi():
|
|
52 |
print("Failed to query GPU indices.")
|
53 |
return []
|
54 |
gpu_indices = result.stdout.strip().split('\n')
|
55 |
-
print(f"gpu_indices: {gpu_indices}")
|
56 |
gpu_stats = []
|
57 |
|
58 |
gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W / \d+W\s+\|\s+(\d+)MiB / \d+MiB\s+\|\s+(\d+)%')
|
59 |
-
gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]
|
|
|
60 |
|
61 |
gpu_name = ""
|
62 |
for index in gpu_indices:
|
@@ -68,7 +111,7 @@ def parse_nvidia_smi():
|
|
68 |
name_match = gpu_name_pattern.search(line)
|
69 |
gpu_info = {}
|
70 |
if name_match:
|
71 |
-
gpu_name = name_match.
|
72 |
if match:
|
73 |
temp, power_usage, mem_usage, gpu_util = map(int, match.groups())
|
74 |
gpu_info.update({
|
@@ -80,7 +123,7 @@ def parse_nvidia_smi():
|
|
80 |
|
81 |
if len(gpu_info) >= 4:
|
82 |
gpu_stats.append(gpu_info)
|
83 |
-
print(f"gpu_stats: {gpu_stats}")
|
84 |
gpu_name = f"{len(gpu_stats)}x{gpu_name}"
|
85 |
gpu_stats_total = {
|
86 |
GPU_TEMP: 0,
|
@@ -131,5 +174,75 @@ def analyze_gpu_stats(stats_list):
|
|
131 |
|
132 |
return avg_stats
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
if __name__ == "__main__":
|
135 |
print(analyze_gpu_stats(parse_nvidia_smi()))
|
|
|
3 |
import subprocess
|
4 |
import re
|
5 |
import os
|
6 |
+
import GPUtil
|
7 |
|
8 |
try:
|
9 |
from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
|
10 |
except:
|
11 |
print("local debug: from display.utils")
|
12 |
from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
|
13 |
+
|
14 |
+
MEM_BW_DICT ={
|
15 |
+
"NVIDIA-A100-PCIe-80GB": 1935,
|
16 |
+
"NVIDIA-A100-SXM-80GB": 2039,
|
17 |
+
"NVIDIA-H100-PCIe-80GB": 2039,
|
18 |
+
"NVIDIA-RTX-A5000-24GB": 768
|
19 |
+
}
|
20 |
+
|
21 |
+
PEAK_FLOPS_DICT = {
|
22 |
+
"float32":{
|
23 |
+
"NVIDIA-A100-PCIe-80GB": 312e12,
|
24 |
+
"NVIDIA-A100-SXM-80GB": 312e12,
|
25 |
+
"NVIDIA-H100-PCIe-80GB": 756e12,
|
26 |
+
"NVIDIA-RTX-A5000-24GB": 222.2e12
|
27 |
+
},
|
28 |
+
"float16":{
|
29 |
+
"NVIDIA-A100-PCIe-80GB": 624e12,
|
30 |
+
"NVIDIA-A100-SXM-80GB": 624e12,
|
31 |
+
"NVIDIA-H100-PCIe-80GB": 1513e12,
|
32 |
+
"NVIDIA-RTX-A5000-24GB": 444.4e12
|
33 |
+
},
|
34 |
+
"bfloat16":{
|
35 |
+
"NVIDIA-A100-PCIe-80GB": 624e12,
|
36 |
+
"NVIDIA-A100-SXM-80GB": 624e12,
|
37 |
+
"NVIDIA-H100-PCIe-80GB": 1513e12,
|
38 |
+
"NVIDIA-RTX-A5000-24GB": 444.4e12
|
39 |
+
},
|
40 |
+
"8bit":{
|
41 |
+
"NVIDIA-A100-PCIe-80GB": 1248e12,
|
42 |
+
"NVIDIA-A100-SXM-80GB": 1248e12,
|
43 |
+
"NVIDIA-H100-PCIe-80GB": 3026e12,
|
44 |
+
"NVIDIA-RTX-A5000-24GB": 889e12
|
45 |
+
},
|
46 |
+
"4bit": {
|
47 |
+
"NVIDIA-A100-PCIe-80GB": 2496e12,
|
48 |
+
"NVIDIA-A100-SXM-80GB": 2496e12,
|
49 |
+
"NVIDIA-H100-PCIe-80GB": 6052e12,
|
50 |
+
"NVIDIA-RTX-A5000-24GB": 1778e12
|
51 |
+
}
|
52 |
+
|
53 |
+
}
|
54 |
|
55 |
def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
|
56 |
for i in range(10):
|
|
|
94 |
print("Failed to query GPU indices.")
|
95 |
return []
|
96 |
gpu_indices = result.stdout.strip().split('\n')
|
97 |
+
# print(f"gpu_indices: {gpu_indices}")
|
98 |
gpu_stats = []
|
99 |
|
100 |
gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W / \d+W\s+\|\s+(\d+)MiB / \d+MiB\s+\|\s+(\d+)%')
|
101 |
+
# gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]+\d+(?:\s*GB)?)')
|
102 |
+
gpu_name_pattern = re.compile(r'NVIDIA\s+(RTX\s+)?([A-Z0-9]+)')
|
103 |
|
104 |
gpu_name = ""
|
105 |
for index in gpu_indices:
|
|
|
111 |
name_match = gpu_name_pattern.search(line)
|
112 |
gpu_info = {}
|
113 |
if name_match:
|
114 |
+
gpu_name = ''.join(filter(None, name_match.groups())).strip()
|
115 |
if match:
|
116 |
temp, power_usage, mem_usage, gpu_util = map(int, match.groups())
|
117 |
gpu_info.update({
|
|
|
123 |
|
124 |
if len(gpu_info) >= 4:
|
125 |
gpu_stats.append(gpu_info)
|
126 |
+
# print(f"gpu_stats: {gpu_stats}")
|
127 |
gpu_name = f"{len(gpu_stats)}x{gpu_name}"
|
128 |
gpu_stats_total = {
|
129 |
GPU_TEMP: 0,
|
|
|
174 |
|
175 |
return avg_stats
|
176 |
|
177 |
+
def get_gpu_number():
|
178 |
+
visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', None)
|
179 |
+
if visible_devices is not None:
|
180 |
+
gpu_indices = visible_devices.split(',')
|
181 |
+
else:
|
182 |
+
# Query all GPU indices if CUDA_VISIBLE_DEVICES is not set
|
183 |
+
result = subprocess.run(['nvidia-smi', '--query-gpu=index', '--format=csv,noheader'], capture_output=True, text=True)
|
184 |
+
if result.returncode != 0:
|
185 |
+
print("Failed to query GPU indices.")
|
186 |
+
return []
|
187 |
+
gpu_indices = result.stdout.strip().split('\n')
|
188 |
+
# print(f"gpu_indices: {gpu_indices}")
|
189 |
+
gpu_stats = []
|
190 |
+
|
191 |
+
gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W / \d+W\s+\|\s+(\d+)MiB / \d+MiB\s+\|\s+(\d+)%')
|
192 |
+
|
193 |
+
for index in gpu_indices:
|
194 |
+
result = subprocess.run(['nvidia-smi', '-i', index], capture_output=True, text=True)
|
195 |
+
output = result.stdout.strip()
|
196 |
+
lines = output.split("\n")
|
197 |
+
for line in lines:
|
198 |
+
match = gpu_info_pattern.search(line)
|
199 |
+
gpu_info = {}
|
200 |
+
if match:
|
201 |
+
temp, power_usage, mem_usage, gpu_util = map(int, match.groups())
|
202 |
+
gpu_info.update({
|
203 |
+
GPU_TEMP: temp,
|
204 |
+
GPU_Power: power_usage,
|
205 |
+
GPU_Mem: round(mem_usage / 1024, 2),
|
206 |
+
GPU_Util: gpu_util
|
207 |
+
})
|
208 |
+
|
209 |
+
if len(gpu_info) >= 4:
|
210 |
+
gpu_stats.append(gpu_info)
|
211 |
+
|
212 |
+
return len(gpu_stats)
|
213 |
+
|
214 |
+
def get_gpu_details():
|
215 |
+
gpus = GPUtil.getGPUs()
|
216 |
+
gpu = gpus[0]
|
217 |
+
name = gpu.name.replace(" ", "-")
|
218 |
+
memory_gb = round(gpu.memoryTotal / 1024)
|
219 |
+
memory = f"{memory_gb}GB"
|
220 |
+
|
221 |
+
for part in name.split('-'):
|
222 |
+
if part.endswith("GB") and part[:-2].isdigit():
|
223 |
+
name = name.replace(f"-{part}", "").replace(part, "")
|
224 |
+
|
225 |
+
formatted_name = f"{name}-{memory}"
|
226 |
+
|
227 |
+
return formatted_name
|
228 |
+
|
229 |
+
def get_peak_bw(gpu_name):
|
230 |
+
return MEM_BW_DICT[gpu_name]
|
231 |
+
|
232 |
+
def get_peak_flops(gpu_name, precision):
|
233 |
+
return PEAK_FLOPS_DICT[precision][gpu_name]
|
234 |
+
|
235 |
+
def transfer_precision2bytes(precision):
|
236 |
+
if precision == "float32":
|
237 |
+
return 4
|
238 |
+
elif precision in ["float16", "bfloat16"]:
|
239 |
+
return 2
|
240 |
+
elif precision == "8bit":
|
241 |
+
return 1
|
242 |
+
elif precision == "4bit":
|
243 |
+
return 0.5
|
244 |
+
else:
|
245 |
+
raise ValueError(f"Unsupported precision: {precision}")
|
246 |
+
|
247 |
if __name__ == "__main__":
|
248 |
print(analyze_gpu_stats(parse_nvidia_smi()))
|