File size: 4,615 Bytes
14e4843 5fd4d0a 14e4843 d6d7ec6 14e4843 034968f d6d7ec6 14e4843 d6d7ec6 5f34a5c 14e4843 d6d7ec6 84f0fa3 d6d7ec6 14e4843 85e30d4 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import glob
import json
from dataclasses import dataclass
from typing import Optional
from huggingface_hub import HfApi, snapshot_download
from src.utils import my_snapshot_download
@dataclass
class EvalRequest:
model: str
private: bool
status: str
json_filepath: str
weight_type: str = "Original"
model_type: str = "" # pretrained, finetuned, with RL
inference_framework: str = "hf-chat"
precision: str = "" # float16, bfloat16
base_model: Optional[str] = None # for adapter models
revision: str = "main" # commit
submitted_time: Optional[str] = (
"2022-05-18T11:40:22.519222" # random date just so that we can still order requests by date
)
model_type: Optional[str] = None
likes: Optional[int] = 0
params: Optional[int] = None
license: Optional[str] = ""
batch_size: Optional[int] = 1
def get_model_args(self) -> str:
model_args = f"pretrained={self.model},revision={self.revision},parallelize=True" # ,max_length=4096"
model_args += ",trust_remote_code=True,device_map=auto"
if self.precision in ["float16", "float32", "bfloat16"]:
model_args += f",dtype={self.precision}"
# Quantized models need some added config, the install of bits and bytes, etc
# elif self.precision == "8bit":
# model_args += ",load_in_8bit=True"
elif self.precision == "4bit":
model_args += ",load_in_4bit=True"
# elif self.precision == "GPTQ":
# A GPTQ model does not need dtype to be specified,
# it will be inferred from the config
elif self.precision == "8bit":
model_args += ",load_in_8bit=True"
else:
raise Exception(f"Unknown precision {self.precision}.")
return model_args
def set_eval_request(api: HfApi, eval_request: EvalRequest, set_to_status: str, hf_repo: str, local_dir: str):
"""Updates a given eval request with its new status on the hub (running, completed, failed, ...)"""
json_filepath = eval_request.json_filepath
with open(json_filepath) as fp:
data = json.load(fp)
data["status"] = set_to_status
with open(json_filepath, "w") as f:
f.write(json.dumps(data))
api.upload_file(
path_or_fileobj=json_filepath,
path_in_repo=json_filepath.replace(local_dir, ""),
repo_id=hf_repo,
repo_type="dataset",
)
def get_eval_requests(job_status: list, local_dir: str, hf_repo: str, do_download: bool = True) -> list[EvalRequest]:
"""Get all pending evaluation requests and return a list in which private
models appearing first, followed by public models sorted by the number of
likes.
Returns:
`list[EvalRequest]`: a list of model info dicts.
"""
if do_download:
my_snapshot_download(
repo_id=hf_repo, revision="main", local_dir=local_dir, repo_type="dataset", max_workers=60
)
json_files = glob.glob(f"{local_dir}/**/*.json", recursive=True)
eval_requests = []
for json_filepath in json_files:
with open(json_filepath) as fp:
data = json.load(fp)
if data["status"] in job_status:
# import pdb
# breakpoint()
data["json_filepath"] = json_filepath
if "job_id" in data:
del data["job_id"]
eval_request = EvalRequest(**data)
eval_requests.append(eval_request)
return eval_requests
def check_completed_evals(
api: HfApi,
hf_repo: str,
local_dir: str,
checked_status: str,
completed_status: str,
failed_status: str,
hf_repo_results: str,
local_dir_results: str,
):
"""Checks if the currently running evals are completed, if yes, update their status on the hub."""
my_snapshot_download(
repo_id=hf_repo_results, revision="main", local_dir=local_dir_results, repo_type="dataset", max_workers=60
)
running_evals = get_eval_requests([checked_status], hf_repo=hf_repo, local_dir=local_dir)
for eval_request in running_evals:
model = eval_request.model
print("====================================")
print(f"Checking {model}")
output_path = model
output_file = f"{local_dir_results}/{output_path}/results*.json"
output_file_exists = len(glob.glob(output_file)) > 0
if output_file_exists:
print(f"EXISTS output file exists for {model} setting it to {completed_status}")
set_eval_request(api, eval_request, completed_status, hf_repo, local_dir)
|