add gpu info
Browse files- backend-cli.py +40 -18
- src/backend/hflm_with_measurement.py +5 -5
- src/backend/manage_requests.py +2 -2
- src/backend/run_eval_suite.py +1 -1
- src/display/utils.py +13 -3
- src/populate.py +12 -1
- src/utils.py +65 -1
backend-cli.py
CHANGED
@@ -6,6 +6,7 @@ import argparse
|
|
6 |
|
7 |
import socket
|
8 |
import random
|
|
|
9 |
from datetime import datetime
|
10 |
|
11 |
from src.backend.run_eval_suite import run_evaluation
|
@@ -16,7 +17,7 @@ from src.backend.manage_requests import EvalRequest
|
|
16 |
from src.leaderboard.read_evals import EvalResult
|
17 |
|
18 |
from src.envs import QUEUE_REPO, RESULTS_REPO, API
|
19 |
-
from src.utils import my_snapshot_download
|
20 |
|
21 |
from src.leaderboard.read_evals import get_raw_eval_results
|
22 |
|
@@ -123,7 +124,16 @@ def request_to_result_name(request: EvalRequest) -> str:
|
|
123 |
|
124 |
|
125 |
def process_evaluation(task: Task, eval_request: EvalRequest, limit: Optional[int] = None) -> dict:
|
126 |
-
batch_size =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
try:
|
128 |
results = run_evaluation(
|
129 |
eval_request=eval_request,
|
@@ -150,6 +160,14 @@ def process_evaluation(task: Task, eval_request: EvalRequest, limit: Optional[in
|
|
150 |
raise
|
151 |
|
152 |
# print("RESULTS", results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
dumped = json.dumps(results, indent=2, default=lambda o: "<not serializable>")
|
155 |
# print(dumped)
|
@@ -409,23 +427,27 @@ if __name__ == "__main__":
|
|
409 |
local_debug = args.debug
|
410 |
# debug specific task by ping
|
411 |
if local_debug:
|
412 |
-
debug_model_names = [args.model] # Use model from arguments
|
413 |
-
debug_task_name = args.task # Use task from arguments
|
|
|
|
|
|
|
414 |
task_lst = TASKS_HARNESS.copy()
|
415 |
-
for
|
416 |
-
for
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
|
|
429 |
else:
|
430 |
while True:
|
431 |
res = False
|
|
|
6 |
|
7 |
import socket
|
8 |
import random
|
9 |
+
import threading
|
10 |
from datetime import datetime
|
11 |
|
12 |
from src.backend.run_eval_suite import run_evaluation
|
|
|
17 |
from src.leaderboard.read_evals import EvalResult
|
18 |
|
19 |
from src.envs import QUEUE_REPO, RESULTS_REPO, API
|
20 |
+
from src.utils import my_snapshot_download, analyze_gpu_stats, parse_nvidia_smi, monitor_gpus
|
21 |
|
22 |
from src.leaderboard.read_evals import get_raw_eval_results
|
23 |
|
|
|
124 |
|
125 |
|
126 |
def process_evaluation(task: Task, eval_request: EvalRequest, limit: Optional[int] = None) -> dict:
|
127 |
+
batch_size = eval_request.batch_size
|
128 |
+
|
129 |
+
init_gpu_info = analyze_gpu_stats(parse_nvidia_smi())
|
130 |
+
# if init_gpu_info['Mem(M)'] > 500:
|
131 |
+
# assert False, f"This machine is not empty: {init_gpu_info}"
|
132 |
+
gpu_stats_list = []
|
133 |
+
stop_event = threading.Event()
|
134 |
+
monitor_thread = threading.Thread(target=monitor_gpus, args=(stop_event, 5, gpu_stats_list))
|
135 |
+
monitor_thread.start()
|
136 |
+
|
137 |
try:
|
138 |
results = run_evaluation(
|
139 |
eval_request=eval_request,
|
|
|
160 |
raise
|
161 |
|
162 |
# print("RESULTS", results)
|
163 |
+
stop_event.set()
|
164 |
+
monitor_thread.join()
|
165 |
+
gpu_info = analyze_gpu_stats(gpu_stats_list)
|
166 |
+
for task_name in results['results'].keys():
|
167 |
+
for key, value in gpu_info.items():
|
168 |
+
results['results'][task_name][f"{key},none"] = int(value)
|
169 |
+
|
170 |
+
print("GPU Usage:", gpu_info)
|
171 |
|
172 |
dumped = json.dumps(results, indent=2, default=lambda o: "<not serializable>")
|
173 |
# print(dumped)
|
|
|
427 |
local_debug = args.debug
|
428 |
# debug specific task by ping
|
429 |
if local_debug:
|
430 |
+
# debug_model_names = [args.model] # Use model from arguments
|
431 |
+
# debug_task_name = [args.task] # Use task from arguments
|
432 |
+
debug_model_names = ["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mixtral-8x7B-v0.1"] # Use model from arguments
|
433 |
+
debug_task_name = ['mmlu', 'selfcheckgpt'] # Use task from arguments
|
434 |
+
precisions = ['float16', 'float16', '8bit']
|
435 |
task_lst = TASKS_HARNESS.copy()
|
436 |
+
for precision in precisions:
|
437 |
+
for task in task_lst:
|
438 |
+
for debug_model_name in debug_model_names:
|
439 |
+
task_name = task.benchmark
|
440 |
+
if task_name not in debug_task_name:
|
441 |
+
continue
|
442 |
+
eval_request = EvalRequest(
|
443 |
+
model=debug_model_name,
|
444 |
+
private=False,
|
445 |
+
status="",
|
446 |
+
json_filepath="",
|
447 |
+
precision=args.precision, # Use precision from arguments
|
448 |
+
inference_framework=args.inference_framework # Use inference framework from arguments
|
449 |
+
)
|
450 |
+
results = process_evaluation(task, eval_request, limit=args.limit)
|
451 |
else:
|
452 |
while True:
|
453 |
res = False
|
src/backend/hflm_with_measurement.py
CHANGED
@@ -57,12 +57,12 @@ class StopWatch(TextStreamer):
|
|
57 |
self.start_decoding = time()
|
58 |
self.decoding_iterations += 1
|
59 |
return
|
60 |
-
|
61 |
def end(self):
|
62 |
if self.decoding_time is None and self.start_decoding is not None:
|
63 |
self.decoding_time = time() - self.start_decoding
|
64 |
return
|
65 |
-
|
66 |
|
67 |
class HFLMWithMeasurement(HFLM):
|
68 |
def __init__(self, **kwargs):
|
@@ -287,7 +287,7 @@ class HFLMWithMeasurement(HFLM):
|
|
287 |
pbar.close()
|
288 |
|
289 |
return re_ord.get_original(res)
|
290 |
-
|
291 |
def _model_generate(self, context, max_length, stop, **generation_kwargs):
|
292 |
# temperature = 0.0 if not set
|
293 |
# if do_sample is false and temp==0.0:
|
@@ -318,7 +318,7 @@ class HFLMWithMeasurement(HFLM):
|
|
318 |
**generation_kwargs,
|
319 |
)
|
320 |
end = time()
|
321 |
-
|
322 |
batch_size = context.shape[0]
|
323 |
output_length = stop_watch.decoding_iterations
|
324 |
|
@@ -403,7 +403,7 @@ class HFLMWithMeasurement(HFLM):
|
|
403 |
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
|
404 |
)
|
405 |
# add EOS token to stop sequences
|
406 |
-
eos = self.tok_decode(self.eot_token_id
|
407 |
if not until:
|
408 |
until = [eos]
|
409 |
else:
|
|
|
57 |
self.start_decoding = time()
|
58 |
self.decoding_iterations += 1
|
59 |
return
|
60 |
+
|
61 |
def end(self):
|
62 |
if self.decoding_time is None and self.start_decoding is not None:
|
63 |
self.decoding_time = time() - self.start_decoding
|
64 |
return
|
65 |
+
|
66 |
|
67 |
class HFLMWithMeasurement(HFLM):
|
68 |
def __init__(self, **kwargs):
|
|
|
287 |
pbar.close()
|
288 |
|
289 |
return re_ord.get_original(res)
|
290 |
+
|
291 |
def _model_generate(self, context, max_length, stop, **generation_kwargs):
|
292 |
# temperature = 0.0 if not set
|
293 |
# if do_sample is false and temp==0.0:
|
|
|
318 |
**generation_kwargs,
|
319 |
)
|
320 |
end = time()
|
321 |
+
|
322 |
batch_size = context.shape[0]
|
323 |
output_length = stop_watch.decoding_iterations
|
324 |
|
|
|
403 |
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
|
404 |
)
|
405 |
# add EOS token to stop sequences
|
406 |
+
eos = self.tok_decode(self.eot_token_id)
|
407 |
if not until:
|
408 |
until = [eos]
|
409 |
else:
|
src/backend/manage_requests.py
CHANGED
@@ -27,10 +27,11 @@ class EvalRequest:
|
|
27 |
likes: Optional[int] = 0
|
28 |
params: Optional[int] = None
|
29 |
license: Optional[str] = ""
|
|
|
30 |
|
31 |
def get_model_args(self) -> str:
|
32 |
model_args = f"pretrained={self.model},revision={self.revision},parallelize=True" # ,max_length=4096"
|
33 |
-
|
34 |
if self.precision in ["float16", "float32", "bfloat16"]:
|
35 |
model_args += f",dtype={self.precision}"
|
36 |
# Quantized models need some added config, the install of bits and bytes, etc
|
@@ -44,7 +45,6 @@ class EvalRequest:
|
|
44 |
pass
|
45 |
elif self.precision == "8bit":
|
46 |
model_args += ",load_in_8bit=True"
|
47 |
-
model_args += ",trust_remote_code=True"
|
48 |
else:
|
49 |
raise Exception(f"Unknown precision {self.precision}.")
|
50 |
return model_args
|
|
|
27 |
likes: Optional[int] = 0
|
28 |
params: Optional[int] = None
|
29 |
license: Optional[str] = ""
|
30 |
+
batch_size: Optional[int] = 1
|
31 |
|
32 |
def get_model_args(self) -> str:
|
33 |
model_args = f"pretrained={self.model},revision={self.revision},parallelize=True" # ,max_length=4096"
|
34 |
+
model_args += ",trust_remote_code=True"
|
35 |
if self.precision in ["float16", "float32", "bfloat16"]:
|
36 |
model_args += f",dtype={self.precision}"
|
37 |
# Quantized models need some added config, the install of bits and bytes, etc
|
|
|
45 |
pass
|
46 |
elif self.precision == "8bit":
|
47 |
model_args += ",load_in_8bit=True"
|
|
|
48 |
else:
|
49 |
raise Exception(f"Unknown precision {self.precision}.")
|
50 |
return model_args
|
src/backend/run_eval_suite.py
CHANGED
@@ -13,7 +13,7 @@ orig_higher_is_better = ConfigurableTask.higher_is_better
|
|
13 |
def process_results_decorator(func):
|
14 |
def wrapper(self, doc, results, *args, **kwargs):
|
15 |
processed_results = [r[0] for r in results]
|
16 |
-
|
17 |
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
18 |
prefilling_time = sum([r[2] for r in results]) / len(results)
|
19 |
decoding_throughput = sum([r[3] for r in results]) / len(results)
|
|
|
13 |
def process_results_decorator(func):
|
14 |
def wrapper(self, doc, results, *args, **kwargs):
|
15 |
processed_results = [r[0] for r in results]
|
16 |
+
|
17 |
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
18 |
prefilling_time = sum([r[2] for r in results]) / len(results)
|
19 |
decoding_throughput = sum([r[3] for r in results]) / len(results)
|
src/display/utils.py
CHANGED
@@ -13,6 +13,11 @@ TS = "T/s" #Decoding throughput (tok/s)
|
|
13 |
InFrame = "Method" #"Inference framework"
|
14 |
MULTIPLE_CHOICEs = ["mmlu"]
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
@dataclass
|
17 |
class Task:
|
18 |
benchmark: str
|
@@ -81,11 +86,16 @@ auto_eval_column_dict.append(["inference_framework", ColumnContent, ColumnConten
|
|
81 |
for task in Tasks:
|
82 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
83 |
# System performance metrics
|
84 |
-
auto_eval_column_dict.append([f"{task.name}_end_to_end_time", ColumnContent, ColumnContent(f"{task.value.col_name}
|
85 |
if task.value.benchmark in MULTIPLE_CHOICEs:
|
86 |
continue
|
87 |
-
auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name}
|
88 |
-
auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name}
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
# Model information
|
91 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
|
|
13 |
InFrame = "Method" #"Inference framework"
|
14 |
MULTIPLE_CHOICEs = ["mmlu"]
|
15 |
|
16 |
+
GPU_TEMP = 'Temp(C)'
|
17 |
+
GPU_Power = 'Power(W)'
|
18 |
+
GPU_Mem = 'Mem(M)'
|
19 |
+
GPU_Util = 'Util(%)'
|
20 |
+
|
21 |
@dataclass
|
22 |
class Task:
|
23 |
benchmark: str
|
|
|
86 |
for task in Tasks:
|
87 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
88 |
# System performance metrics
|
89 |
+
auto_eval_column_dict.append([f"{task.name}_end_to_end_time", ColumnContent, ColumnContent(f"{task.value.col_name} {E2Es}", "number", True)])
|
90 |
if task.value.benchmark in MULTIPLE_CHOICEs:
|
91 |
continue
|
92 |
+
auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", True)])
|
93 |
+
auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True)])
|
94 |
+
|
95 |
+
auto_eval_column_dict.append([f"{task.name}_gpu_mem", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Mem}", "number", True)])
|
96 |
+
auto_eval_column_dict.append([f"{task.name}_gpu_power", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Power}", "number", True)])
|
97 |
+
auto_eval_column_dict.append([f"{task.name}_gpu_temp", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_TEMP}", "number", True)])
|
98 |
+
auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True)])
|
99 |
|
100 |
# Model information
|
101 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
src/populate.py
CHANGED
@@ -12,7 +12,7 @@ from src.leaderboard.read_evals import get_raw_eval_results, EvalResult, update_
|
|
12 |
|
13 |
from src.backend.envs import Tasks as BackendTasks
|
14 |
from src.display.utils import Tasks
|
15 |
-
from src.display.utils import E2Es, PREs, TS
|
16 |
|
17 |
def get_leaderboard_df(
|
18 |
results_path: str,
|
@@ -52,6 +52,13 @@ def get_leaderboard_df(
|
|
52 |
"decoding_throughput": f"{TS}",
|
53 |
}
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
all_data_json = []
|
56 |
for entry in all_data_json_:
|
57 |
new_entry = copy.deepcopy(entry)
|
@@ -63,6 +70,10 @@ def get_leaderboard_df(
|
|
63 |
if sys_metric in entry[k]:
|
64 |
new_entry[f"{k} {metric_namne}"] = entry[k][sys_metric]
|
65 |
|
|
|
|
|
|
|
|
|
66 |
all_data_json += [new_entry]
|
67 |
|
68 |
# all_data_json.append(baseline_row)
|
|
|
12 |
|
13 |
from src.backend.envs import Tasks as BackendTasks
|
14 |
from src.display.utils import Tasks
|
15 |
+
from src.display.utils import E2Es, PREs, TS, GPU_Mem, GPU_Power, GPU_TEMP, GPU_Util
|
16 |
|
17 |
def get_leaderboard_df(
|
18 |
results_path: str,
|
|
|
52 |
"decoding_throughput": f"{TS}",
|
53 |
}
|
54 |
|
55 |
+
gpu_metrics_to_name_map = {
|
56 |
+
GPU_Util: GPU_Util,
|
57 |
+
GPU_TEMP: GPU_TEMP,
|
58 |
+
GPU_Power: GPU_Power,
|
59 |
+
GPU_Mem: GPU_Mem
|
60 |
+
}
|
61 |
+
|
62 |
all_data_json = []
|
63 |
for entry in all_data_json_:
|
64 |
new_entry = copy.deepcopy(entry)
|
|
|
70 |
if sys_metric in entry[k]:
|
71 |
new_entry[f"{k} {metric_namne}"] = entry[k][sys_metric]
|
72 |
|
73 |
+
for gpu_metric, metric_namne in gpu_metrics_to_name_map.items():
|
74 |
+
if gpu_metric in entry[k]:
|
75 |
+
new_entry[f"{k} {metric_namne}"] = entry[k][gpu_metric]
|
76 |
+
|
77 |
all_data_json += [new_entry]
|
78 |
|
79 |
# all_data_json.append(baseline_row)
|
src/utils.py
CHANGED
@@ -1,6 +1,12 @@
|
|
1 |
import pandas as pd
|
2 |
from huggingface_hub import snapshot_download
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
|
6 |
for i in range(10):
|
@@ -32,3 +38,61 @@ def get_dataset_summary_table(file_path):
|
|
32 |
df = df[["Category", "Benchmark", "Data Split", "Data Size", "Language"]]
|
33 |
|
34 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
from huggingface_hub import snapshot_download
|
3 |
+
import subprocess
|
4 |
+
import re
|
5 |
+
try:
|
6 |
+
from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util
|
7 |
+
except:
|
8 |
+
print("local debug: from display.utils")
|
9 |
+
from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util
|
10 |
|
11 |
def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
|
12 |
for i in range(10):
|
|
|
38 |
df = df[["Category", "Benchmark", "Data Split", "Data Size", "Language"]]
|
39 |
|
40 |
return df
|
41 |
+
|
42 |
+
def parse_nvidia_smi():
|
43 |
+
# Execute the nvidia-smi command
|
44 |
+
result = subprocess.run(['nvidia-smi'], capture_output=True, text=True)
|
45 |
+
output = result.stdout.strip()
|
46 |
+
|
47 |
+
# Initialize data storage
|
48 |
+
gpu_stats = []
|
49 |
+
|
50 |
+
# Regex to extract the relevant data for each GPU
|
51 |
+
gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W / \d+W\s+\|\s+(\d+)MiB / \d+MiB\s+\|\s+(\d+)%')
|
52 |
+
lines = output.split('\n')
|
53 |
+
|
54 |
+
for line in lines:
|
55 |
+
match = gpu_info_pattern.search(line)
|
56 |
+
if match:
|
57 |
+
temp, power_usage, mem_usage, gpu_util = map(int, match.groups())
|
58 |
+
gpu_stats.append({
|
59 |
+
GPU_TEMP: temp,
|
60 |
+
GPU_Power: power_usage,
|
61 |
+
GPU_Mem: mem_usage,
|
62 |
+
GPU_Util: gpu_util
|
63 |
+
})
|
64 |
+
|
65 |
+
gpu_stats_total = {
|
66 |
+
GPU_TEMP: 0,
|
67 |
+
GPU_Power: 0,
|
68 |
+
GPU_Mem: 0,
|
69 |
+
GPU_Util: 0
|
70 |
+
}
|
71 |
+
for gpu_stat in gpu_stats:
|
72 |
+
gpu_stats_total[GPU_TEMP] += gpu_stat[GPU_TEMP]
|
73 |
+
gpu_stats_total[GPU_Power] += gpu_stat[GPU_Power]
|
74 |
+
gpu_stats_total[GPU_Mem] += gpu_stat[GPU_Mem]
|
75 |
+
gpu_stats_total[GPU_Util] += gpu_stat[GPU_Util]
|
76 |
+
|
77 |
+
gpu_stats_total[GPU_TEMP] /= len(gpu_stats)
|
78 |
+
gpu_stats_total[GPU_Power] /= len(gpu_stats)
|
79 |
+
gpu_stats_total[GPU_Util] /= len(gpu_stats)
|
80 |
+
|
81 |
+
return [gpu_stats_total]
|
82 |
+
|
83 |
+
def monitor_gpus(stop_event, interval, stats_list):
|
84 |
+
while not stop_event.is_set():
|
85 |
+
gpu_stats = parse_nvidia_smi()
|
86 |
+
if gpu_stats:
|
87 |
+
stats_list.extend(gpu_stats)
|
88 |
+
stop_event.wait(interval)
|
89 |
+
|
90 |
+
def analyze_gpu_stats(stats_list):
|
91 |
+
if not stats_list:
|
92 |
+
return None
|
93 |
+
avg_stats = {key: sum(d[key] for d in stats_list) / len(stats_list) for key in stats_list[0]}
|
94 |
+
return avg_stats
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
print(analyze_gpu_stats(parse_nvidia_smi()))
|