File size: 19,444 Bytes
9cf98e1
ac28dc4
 
 
 
 
 
 
9340499
 
ac28dc4
 
a812692
ac28dc4
 
420ea59
 
a812692
 
ac28dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e74aea7
ac28dc4
e74aea7
ac28dc4
 
 
e74aea7
 
 
 
 
 
 
 
a812692
 
 
 
 
 
 
 
 
 
 
 
 
420ea59
 
 
 
 
 
 
 
e74aea7
ac28dc4
 
 
 
 
 
 
 
420ea59
ac28dc4
 
 
 
 
 
1174a8a
 
8a10c55
c6d0958
1174a8a
 
 
 
 
 
 
 
 
ef26308
1174a8a
 
 
 
 
 
 
 
 
 
 
c6d0958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174a8a
 
 
 
9340499
c6d0958
 
a812692
9340499
 
 
 
a812692
9cf98e1
ac28dc4
 
420ea59
1174a8a
e74aea7
c6d0958
 
a8d09fe
 
 
ac28dc4
 
 
 
 
91da599
 
ac28dc4
 
 
c6d0958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac28dc4
c6d0958
 
420ea59
c6d0958
 
 
 
 
 
 
 
 
 
420ea59
 
 
 
 
 
 
 
 
 
 
 
 
c6d0958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac28dc4
e74aea7
 
ac28dc4
 
 
 
 
 
 
 
 
 
 
1174a8a
a812692
 
1174a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac28dc4
420ea59
 
ac28dc4
9340499
 
 
 
 
 
 
 
 
a812692
4cde2bd
 
 
 
 
 
a924296
9340499
 
 
 
 
 
 
 
 
e74aea7
9340499
 
 
 
 
 
 
 
 
 
e74aea7
9340499
 
 
 
 
 
 
 
 
e74aea7
9340499
 
 
 
 
 
 
 
 
 
 
e74aea7
ac28dc4
 
 
a812692
9340499
10c4fbc
 
 
ac28dc4
10c4fbc
 
a812692
10c4fbc
 
 
 
 
 
ac28dc4
 
420ea59
a812692
e74aea7
a812692
e74aea7
a812692
e74aea7
ac28dc4
10c4fbc
 
ac28dc4
 
 
 
 
 
 
ec4d5dc
a8d09fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import spaces
import gradio as gr
import torch
import torchaudio
import librosa
from modules.commons import build_model, load_checkpoint, recursive_munch
import yaml
from hf_utils import load_custom_model_from_hf
import numpy as np
from pydub import AudioSegment

# Load model and configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
                                                "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
                                                "config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
# dit_checkpoint_path = "E:/DiT_epoch_00018_step_801000.pth"
# dit_config_path = "configs/config_dit_mel_seed_uvit_whisper_small_encoder_wavenet.yml"
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']

# Load checkpoints
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
                                 load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model:
    model[key].eval()
    model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)

# Load additional modules
from modules.campplus.DTDNN import CAMPPlus

campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
campplus_model.eval()
campplus_model.to(device)

from modules.bigvgan import bigvgan

bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)

# remove weight norm in the model and set to eval mode
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)

ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')

codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")

ckpt_params = torch.load(ckpt_path, map_location="cpu")

for key in codec_encoder:
    codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
_ = [codec_encoder[key].eval() for key in codec_encoder]
_ = [codec_encoder[key].to(device) for key in codec_encoder]

# whisper
from transformers import AutoFeatureExtractor, WhisperModel

whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer,
                                                                     'whisper_name') else "openai/whisper-small"
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
del whisper_model.decoder
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)

# Generate mel spectrograms
mel_fn_args = {
    "n_fft": config['preprocess_params']['spect_params']['n_fft'],
    "win_size": config['preprocess_params']['spect_params']['win_length'],
    "hop_size": config['preprocess_params']['spect_params']['hop_length'],
    "num_mels": config['preprocess_params']['spect_params']['n_mels'],
    "sampling_rate": sr,
    "fmin": 0,
    "fmax": None,
    "center": False
}
from modules.audio import mel_spectrogram

to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)

# f0 conditioned model
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
                                                "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
                                                "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")

config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model_f0 = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']

# Load checkpoints
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path,
                                 load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model_f0:
    model_f0[key].eval()
    model_f0[key].to(device)
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)

# f0 extractor
from modules.rmvpe import RMVPE

model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=False, device=device)

mel_fn_args_f0 = {
    "n_fft": config['preprocess_params']['spect_params']['n_fft'],
    "win_size": config['preprocess_params']['spect_params']['win_length'],
    "hop_size": config['preprocess_params']['spect_params']['hop_length'],
    "num_mels": config['preprocess_params']['spect_params']['n_mels'],
    "sampling_rate": sr,
    "fmin": 0,
    "fmax": None,
    "center": False
}
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)

# remove weight norm in the model and set to eval mode
bigvgan_44k_model.remove_weight_norm()
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)

def adjust_f0_semitones(f0_sequence, n_semitones):
    factor = 2 ** (n_semitones / 12)
    return f0_sequence * factor

def crossfade(chunk1, chunk2, overlap):
    fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
    fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
    chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
    return chunk2

# streaming and chunk processing related params
bitrate = "320k"
overlap_frame_len = 16
@spaces.GPU
@torch.no_grad()
@torch.inference_mode()
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
    inference_module = model if not f0_condition else model_f0
    mel_fn = to_mel if not f0_condition else to_mel_f0
    bigvgan_fn = bigvgan_model if not f0_condition else bigvgan_44k_model
    sr = 22050 if not f0_condition else 44100
    hop_length = 256 if not f0_condition else 512
    max_context_window = sr // hop_length * 30
    overlap_wave_len = overlap_frame_len * hop_length
    # Load audio
    source_audio = librosa.load(source, sr=sr)[0]
    ref_audio = librosa.load(target, sr=sr)[0]

    # Process audio
    source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
    ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)

    # Resample
    ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
    converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
    # if source audio less than 30 seconds, whisper can handle in one forward
    if converted_waves_16k.size(-1) <= 16000 * 30:
        alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
                                               return_tensors="pt",
                                               return_attention_mask=True,
                                               sampling_rate=16000)
        alt_input_features = whisper_model._mask_input_features(
            alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
        alt_outputs = whisper_model.encoder(
            alt_input_features.to(whisper_model.encoder.dtype),
            head_mask=None,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )
        S_alt = alt_outputs.last_hidden_state.to(torch.float32)
        S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
    else:
        overlapping_time = 5  # 5 seconds
        S_alt_list = []
        buffer = None
        traversed_time = 0
        while traversed_time < converted_waves_16k.size(-1):
            if buffer is None:  # first chunk
                chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
            else:
                chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
            alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
                                                   return_tensors="pt",
                                                   return_attention_mask=True,
                                                   sampling_rate=16000)
            alt_input_features = whisper_model._mask_input_features(
                alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
            alt_outputs = whisper_model.encoder(
                alt_input_features.to(whisper_model.encoder.dtype),
                head_mask=None,
                output_attentions=False,
                output_hidden_states=False,
                return_dict=True,
            )
            S_alt = alt_outputs.last_hidden_state.to(torch.float32)
            S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
            if traversed_time == 0:
                S_alt_list.append(S_alt)
            else:
                S_alt_list.append(S_alt[:, 50 * overlapping_time:])
            buffer = chunk[:, -16000 * overlapping_time:]
            traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
        S_alt = torch.cat(S_alt_list, dim=1)

    ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
    ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
                                           return_tensors="pt",
                                           return_attention_mask=True)
    ori_input_features = whisper_model._mask_input_features(
        ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
    with torch.no_grad():
        ori_outputs = whisper_model.encoder(
            ori_input_features.to(whisper_model.encoder.dtype),
            head_mask=None,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )
    S_ori = ori_outputs.last_hidden_state.to(torch.float32)
    S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]

    mel = mel_fn(source_audio.to(device).float())
    mel2 = mel_fn(ref_audio.to(device).float())

    target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
    target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)

    feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
                                              num_mel_bins=80,
                                              dither=0,
                                              sample_frequency=16000)
    feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
    style2 = campplus_model(feat2.unsqueeze(0))

    if f0_condition:
        F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
        F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)

        F0_ori = torch.from_numpy(F0_ori).to(device)[None]
        F0_alt = torch.from_numpy(F0_alt).to(device)[None]

        voiced_F0_ori = F0_ori[F0_ori > 1]
        voiced_F0_alt = F0_alt[F0_alt > 1]

        log_f0_alt = torch.log(F0_alt + 1e-5)
        voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
        voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
        median_log_f0_ori = torch.median(voiced_log_f0_ori)
        median_log_f0_alt = torch.median(voiced_log_f0_alt)

        # shift alt log f0 level to ori log f0 level
        shifted_log_f0_alt = log_f0_alt.clone()
        if auto_f0_adjust:
            shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
        shifted_f0_alt = torch.exp(shifted_log_f0_alt)
        if pitch_shift != 0:
            shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
    else:
        F0_ori = None
        F0_alt = None
        shifted_f0_alt = None

    # Length regulation
    cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
    prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)

    max_source_window = max_context_window - mel2.size(2)
    # split source condition (cond) into chunks
    processed_frames = 0
    generated_wave_chunks = []
    # generate chunk by chunk and stream the output
    while processed_frames < cond.size(1):
        chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
        is_last_chunk = processed_frames + max_source_window >= cond.size(1)
        cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
        with torch.autocast(device_type='cuda', dtype=torch.float16):
            # Voice Conversion
            vc_target = inference_module.cfm.inference(cat_condition,
                                                       torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
                                                       mel2, style2, None, diffusion_steps,
                                                       inference_cfg_rate=inference_cfg_rate)
            vc_target = vc_target[:, :, mel2.size(-1):]
        vc_wave = bigvgan_fn(vc_target.float())[0]
        if processed_frames == 0:
            if is_last_chunk:
                output_wave = vc_wave[0].cpu().numpy()
                generated_wave_chunks.append(output_wave)
                output_wave = (output_wave * 32768.0).astype(np.int16)
                mp3_bytes = AudioSegment(
                    output_wave.tobytes(), frame_rate=sr,
                    sample_width=output_wave.dtype.itemsize, channels=1
                ).export(format="mp3", bitrate=bitrate).read()
                yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
                break
            output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
            generated_wave_chunks.append(output_wave)
            previous_chunk = vc_wave[0, -overlap_wave_len:]
            processed_frames += vc_target.size(2) - overlap_frame_len
            output_wave = (output_wave * 32768.0).astype(np.int16)
            mp3_bytes = AudioSegment(
                output_wave.tobytes(), frame_rate=sr,
                sample_width=output_wave.dtype.itemsize, channels=1
            ).export(format="mp3", bitrate=bitrate).read()
            yield mp3_bytes, None
        elif is_last_chunk:
            output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
            generated_wave_chunks.append(output_wave)
            processed_frames += vc_target.size(2) - overlap_frame_len
            output_wave = (output_wave * 32768.0).astype(np.int16)
            mp3_bytes = AudioSegment(
                output_wave.tobytes(), frame_rate=sr,
                sample_width=output_wave.dtype.itemsize, channels=1
            ).export(format="mp3", bitrate=bitrate).read()
            yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
            break
        else:
            output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
            generated_wave_chunks.append(output_wave)
            previous_chunk = vc_wave[0, -overlap_wave_len:]
            processed_frames += vc_target.size(2) - overlap_frame_len
            output_wave = (output_wave * 32768.0).astype(np.int16)
            mp3_bytes = AudioSegment(
                output_wave.tobytes(), frame_rate=sr,
                sample_width=output_wave.dtype.itemsize, channels=1
            ).export(format="mp3", bitrate=bitrate).read()
            yield mp3_bytes, None


if __name__ == "__main__":
    description = ("State-of-the-Art zero-shot voice conversion/singing voice conversion. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
                   "for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
                   "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
                   "无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
                   "请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。")
    inputs = [
        gr.Audio(type="filepath", label="Source Audio / 源音频"),
        gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
        gr.Slider(minimum=1, maximum=200, value=25, step=1, label="Diffusion Steps / 扩散步数", info="25 by default, 50~100 for best quality / 默认为 25,50~100 为最佳质量"),
        gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
        gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence / 有微小影响"),
        gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False, info="Must set to true for singing voice conversion / 歌声转换时必须勾选"),
        gr.Checkbox(label="Auto F0 adjust / 自动F0调整", value=True,
                    info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used. / 粗略调整 F0 以匹配目标音色,仅在勾选 '启用F0输入' 时生效"),
        gr.Slider(label='Pitch shift / 音调变换', minimum=-24, maximum=24, step=1, value=0, info="Pitch shift in semitones, only works when F0 conditioned model is used / 半音数的音高变换,仅在勾选 '启用F0输入' 时生效"),
    ]

    examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
                ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, False, True, 0],
                ["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
                 "examples/reference/kobe_0.wav", 50, 1.0, 0.7, True, False, -6],
                ["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
                 "examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
                ]

    outputs = [gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
               gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')]

    gr.Interface(fn=voice_conversion,
                 description=description,
                 inputs=inputs,
                 outputs=outputs,
                 title="Seed Voice Conversion",
                 examples=examples,
                 cache_examples=False,
                 ).launch()