Update app.py
Browse files
app.py
CHANGED
@@ -13,9 +13,8 @@ import spaces
|
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
15 |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
16 |
-
"
|
17 |
-
"
|
18 |
-
|
19 |
config = yaml.safe_load(open(dit_config_path, 'r'))
|
20 |
model_params = recursive_munch(config['model_params'])
|
21 |
model = build_model(model_params, stage='DiT')
|
@@ -39,18 +38,6 @@ campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"
|
|
39 |
campplus_model.eval()
|
40 |
campplus_model.to(device)
|
41 |
|
42 |
-
from modules.hifigan.generator import HiFTGenerator
|
43 |
-
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
|
44 |
-
|
45 |
-
hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
46 |
-
"hift.pt",
|
47 |
-
"hifigan.yml")
|
48 |
-
hift_config = yaml.safe_load(open(hift_config_path, 'r'))
|
49 |
-
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
|
50 |
-
hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu'))
|
51 |
-
hift_gen.eval()
|
52 |
-
hift_gen.to(device)
|
53 |
-
|
54 |
from modules.bigvgan import bigvgan
|
55 |
|
56 |
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
|
@@ -59,25 +46,27 @@ bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_
|
|
59 |
bigvgan_model.remove_weight_norm()
|
60 |
bigvgan_model = bigvgan_model.eval().to(device)
|
61 |
|
62 |
-
|
63 |
-
if speech_tokenizer_type == 'cosyvoice':
|
64 |
-
from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd
|
65 |
-
speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
|
66 |
-
cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path,
|
67 |
-
device='cuda', device_id=0)
|
68 |
-
elif speech_tokenizer_type == 'facodec':
|
69 |
-
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# Generate mel spectrograms
|
83 |
mel_fn_args = {
|
@@ -87,7 +76,7 @@ mel_fn_args = {
|
|
87 |
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
88 |
"sampling_rate": sr,
|
89 |
"fmin": 0,
|
90 |
-
"fmax":
|
91 |
"center": False
|
92 |
}
|
93 |
mel_fn_args_f0 = {
|
@@ -149,7 +138,7 @@ bitrate = "320k"
|
|
149 |
@spaces.GPU
|
150 |
@torch.no_grad()
|
151 |
@torch.inference_mode()
|
152 |
-
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate,
|
153 |
inference_module = model if not f0_condition else model_f0
|
154 |
mel_fn = to_mel if not f0_condition else to_mel_f0
|
155 |
# Load audio
|
@@ -161,14 +150,10 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
|
|
161 |
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
|
162 |
|
163 |
# Resample
|
164 |
-
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
165 |
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
166 |
|
167 |
# Extract features
|
168 |
-
if
|
169 |
-
S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0]
|
170 |
-
S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0]
|
171 |
-
elif speech_tokenizer_type == 'facodec':
|
172 |
converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000)
|
173 |
waves_input = converted_waves_24k.unsqueeze(1)
|
174 |
max_wave_len_per_chunk = 24000 * 20
|
@@ -201,6 +186,74 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
|
|
201 |
waves_input,
|
202 |
)
|
203 |
S_ori = torch.cat([codes[1], codes[0]], dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
mel = mel_fn(source_audio.to(device).float())
|
206 |
mel2 = mel_fn(ref_audio.to(device).float())
|
@@ -248,8 +301,8 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
|
|
248 |
shifted_f0_alt = None
|
249 |
|
250 |
# Length regulation
|
251 |
-
cond = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=
|
252 |
-
prompt_condition = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=
|
253 |
|
254 |
max_source_window = max_context_window - mel2.size(2)
|
255 |
# split source condition (cond) into chunks
|
@@ -266,10 +319,7 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
|
|
266 |
mel2, style2, None, diffusion_steps,
|
267 |
inference_cfg_rate=inference_cfg_rate)
|
268 |
vc_target = vc_target[:, :, mel2.size(-1):]
|
269 |
-
|
270 |
-
vc_wave = hift_gen.inference(vc_target, f0=None)
|
271 |
-
else:
|
272 |
-
vc_wave = bigvgan_model(vc_target)[0]
|
273 |
if processed_frames == 0:
|
274 |
if is_last_chunk:
|
275 |
output_wave = vc_wave[0].cpu().numpy()
|
@@ -327,19 +377,18 @@ if __name__ == "__main__":
|
|
327 |
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps / 扩散步数", info="10 by default, 50~100 for best quality / 默认为 10,50~100 为最佳质量"),
|
328 |
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
|
329 |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence / 有微小影响"),
|
330 |
-
gr.Slider(minimum=1, maximum=3, step=1, value=3, label="N FAcodec Quantizers / FAcodec码本数量", info="the less FAcodec quantizer used, the less prosody of source audio is preserved / 使用的FAcodec码本越少,源音频的韵律保留越少"),
|
331 |
gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False, info="Must set to true for singing voice conversion / 歌声转换时必须勾选"),
|
332 |
gr.Checkbox(label="Auto F0 adjust / 自动F0调整", value=True,
|
333 |
info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used. / 粗略调整 F0 以匹配目标音色,仅在勾选 '启用F0输入' 时生效"),
|
334 |
gr.Slider(label='Pitch shift / 音调变换', minimum=-24, maximum=24, step=1, value=0, info="Pitch shift in semitones, only works when F0 conditioned model is used / 半音数的音高变换,仅在勾选 '启用F0输入' 时生效"),
|
335 |
]
|
336 |
|
337 |
-
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7,
|
338 |
-
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7,
|
339 |
["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
|
340 |
-
"examples/reference/teio_0.wav", 100, 1.0, 0.7,
|
341 |
["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
|
342 |
-
"examples/reference/trump_0.wav", 50, 1.0, 0.7,
|
343 |
]
|
344 |
|
345 |
outputs = [gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
|
@@ -352,4 +401,4 @@ if __name__ == "__main__":
|
|
352 |
title="Seed Voice Conversion",
|
353 |
examples=examples,
|
354 |
cache_examples=False,
|
355 |
-
).launch()
|
|
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
15 |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
16 |
+
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
|
17 |
+
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
|
|
|
18 |
config = yaml.safe_load(open(dit_config_path, 'r'))
|
19 |
model_params = recursive_munch(config['model_params'])
|
20 |
model = build_model(model_params, stage='DiT')
|
|
|
38 |
campplus_model.eval()
|
39 |
campplus_model.to(device)
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
from modules.bigvgan import bigvgan
|
42 |
|
43 |
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
|
|
|
46 |
bigvgan_model.remove_weight_norm()
|
47 |
bigvgan_model = bigvgan_model.eval().to(device)
|
48 |
|
49 |
+
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
codec_config = yaml.safe_load(open(config_path))
|
52 |
+
codec_model_params = recursive_munch(codec_config['model_params'])
|
53 |
+
codec_encoder = build_model(codec_model_params, stage="codec")
|
54 |
|
55 |
+
ckpt_params = torch.load(ckpt_path, map_location="cpu")
|
56 |
|
57 |
+
for key in codec_encoder:
|
58 |
+
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
|
59 |
+
_ = [codec_encoder[key].eval() for key in codec_encoder]
|
60 |
+
_ = [codec_encoder[key].to(device) for key in codec_encoder]
|
61 |
+
|
62 |
+
# whisper
|
63 |
+
from transformers import AutoFeatureExtractor, WhisperModel
|
64 |
+
|
65 |
+
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer,
|
66 |
+
'whisper_name') else "openai/whisper-small"
|
67 |
+
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
|
68 |
+
del whisper_model.decoder
|
69 |
+
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
|
70 |
|
71 |
# Generate mel spectrograms
|
72 |
mel_fn_args = {
|
|
|
76 |
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
77 |
"sampling_rate": sr,
|
78 |
"fmin": 0,
|
79 |
+
"fmax": None,
|
80 |
"center": False
|
81 |
}
|
82 |
mel_fn_args_f0 = {
|
|
|
138 |
@spaces.GPU
|
139 |
@torch.no_grad()
|
140 |
@torch.inference_mode()
|
141 |
+
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
|
142 |
inference_module = model if not f0_condition else model_f0
|
143 |
mel_fn = to_mel if not f0_condition else to_mel_f0
|
144 |
# Load audio
|
|
|
150 |
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
|
151 |
|
152 |
# Resample
|
|
|
153 |
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
154 |
|
155 |
# Extract features
|
156 |
+
if f0_condition:
|
|
|
|
|
|
|
157 |
converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000)
|
158 |
waves_input = converted_waves_24k.unsqueeze(1)
|
159 |
max_wave_len_per_chunk = 24000 * 20
|
|
|
186 |
waves_input,
|
187 |
)
|
188 |
S_ori = torch.cat([codes[1], codes[0]], dim=1)
|
189 |
+
else:
|
190 |
+
converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
191 |
+
# if source audio less than 30 seconds, whisper can handle in one forward
|
192 |
+
if converted_waves_16k.size(-1) <= 16000 * 30:
|
193 |
+
alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
|
194 |
+
return_tensors="pt",
|
195 |
+
return_attention_mask=True,
|
196 |
+
sampling_rate=16000)
|
197 |
+
alt_input_features = whisper_model._mask_input_features(
|
198 |
+
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
|
199 |
+
alt_outputs = whisper_model.encoder(
|
200 |
+
alt_input_features.to(whisper_model.encoder.dtype),
|
201 |
+
head_mask=None,
|
202 |
+
output_attentions=False,
|
203 |
+
output_hidden_states=False,
|
204 |
+
return_dict=True,
|
205 |
+
)
|
206 |
+
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
207 |
+
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
|
208 |
+
else:
|
209 |
+
overlapping_time = 5 # 5 seconds
|
210 |
+
S_alt_list = []
|
211 |
+
buffer = None
|
212 |
+
traversed_time = 0
|
213 |
+
while traversed_time < converted_waves_16k.size(-1):
|
214 |
+
if buffer is None: # first chunk
|
215 |
+
chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
|
216 |
+
else:
|
217 |
+
chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
|
218 |
+
alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
|
219 |
+
return_tensors="pt",
|
220 |
+
return_attention_mask=True,
|
221 |
+
sampling_rate=16000)
|
222 |
+
alt_input_features = whisper_model._mask_input_features(
|
223 |
+
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
|
224 |
+
alt_outputs = whisper_model.encoder(
|
225 |
+
alt_input_features.to(whisper_model.encoder.dtype),
|
226 |
+
head_mask=None,
|
227 |
+
output_attentions=False,
|
228 |
+
output_hidden_states=False,
|
229 |
+
return_dict=True,
|
230 |
+
)
|
231 |
+
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
232 |
+
S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
|
233 |
+
if traversed_time == 0:
|
234 |
+
S_alt_list.append(S_alt)
|
235 |
+
else:
|
236 |
+
S_alt_list.append(S_alt[:, 50 * overlapping_time:])
|
237 |
+
buffer = chunk[:, -16000 * overlapping_time:]
|
238 |
+
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
|
239 |
+
S_alt = torch.cat(S_alt_list, dim=1)
|
240 |
+
|
241 |
+
ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
242 |
+
ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
|
243 |
+
return_tensors="pt",
|
244 |
+
return_attention_mask=True)
|
245 |
+
ori_input_features = whisper_model._mask_input_features(
|
246 |
+
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
|
247 |
+
with torch.no_grad():
|
248 |
+
ori_outputs = whisper_model.encoder(
|
249 |
+
ori_input_features.to(whisper_model.encoder.dtype),
|
250 |
+
head_mask=None,
|
251 |
+
output_attentions=False,
|
252 |
+
output_hidden_states=False,
|
253 |
+
return_dict=True,
|
254 |
+
)
|
255 |
+
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
|
256 |
+
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
|
257 |
|
258 |
mel = mel_fn(source_audio.to(device).float())
|
259 |
mel2 = mel_fn(ref_audio.to(device).float())
|
|
|
301 |
shifted_f0_alt = None
|
302 |
|
303 |
# Length regulation
|
304 |
+
cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
|
305 |
+
prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)
|
306 |
|
307 |
max_source_window = max_context_window - mel2.size(2)
|
308 |
# split source condition (cond) into chunks
|
|
|
319 |
mel2, style2, None, diffusion_steps,
|
320 |
inference_cfg_rate=inference_cfg_rate)
|
321 |
vc_target = vc_target[:, :, mel2.size(-1):]
|
322 |
+
vc_wave = bigvgan_model(vc_target)[0]
|
|
|
|
|
|
|
323 |
if processed_frames == 0:
|
324 |
if is_last_chunk:
|
325 |
output_wave = vc_wave[0].cpu().numpy()
|
|
|
377 |
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps / 扩散步数", info="10 by default, 50~100 for best quality / 默认为 10,50~100 为最佳质量"),
|
378 |
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
|
379 |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence / 有微小影响"),
|
|
|
380 |
gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False, info="Must set to true for singing voice conversion / 歌声转换时必须勾选"),
|
381 |
gr.Checkbox(label="Auto F0 adjust / 自动F0调整", value=True,
|
382 |
info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used. / 粗略调整 F0 以匹配目标音色,仅在勾选 '启用F0输入' 时生效"),
|
383 |
gr.Slider(label='Pitch shift / 音调变换', minimum=-24, maximum=24, step=1, value=0, info="Pitch shift in semitones, only works when F0 conditioned model is used / 半音数的音高变换,仅在勾选 '启用F0输入' 时生效"),
|
384 |
]
|
385 |
|
386 |
+
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
|
387 |
+
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
|
388 |
["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
|
389 |
+
"examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0],
|
390 |
["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
|
391 |
+
"examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
|
392 |
]
|
393 |
|
394 |
outputs = [gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
|
|
|
401 |
title="Seed Voice Conversion",
|
402 |
examples=examples,
|
403 |
cache_examples=False,
|
404 |
+
).launch()
|