Spaces:
Runtime error
Runtime error
File size: 5,708 Bytes
162d5c8 cf5e7f4 162d5c8 62a21bd cf5e7f4 ac35a95 62a21bd 162d5c8 62a21bd d91a673 62a21bd e2846c4 09ede70 e2846c4 ac35a95 ad67495 cf5e7f4 e2846c4 149eeaf e2846c4 149eeaf e2846c4 ad67495 162d5c8 9ed41df cf5e7f4 62a21bd 149eeaf cf5e7f4 149eeaf cf5e7f4 7925882 cf5e7f4 9ed41df 62a21bd cf5e7f4 162d5c8 62a21bd e2846c4 62a21bd e2846c4 62a21bd 0d27fd9 62a21bd 162d5c8 d91a673 162d5c8 768e92a ac35a95 62a21bd 768e92a ac35a95 d91a673 cf5e7f4 d91a673 cf5e7f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
from typing import List
import av
import asyncio
from collections import deque
import threading
import cv2
import numpy as np
import ray
from ray.util.queue import Queue
from webrtc_av_queue_actor import WebRtcAVQueueActor
import pydub
import torch
class StreamlitAVQueue:
def __init__(self, audio_bit_rate=16000):
self._output_channels = 2
self._audio_bit_rate = audio_bit_rate
self._listening = True
self._looking = False
self._lock = threading.Lock()
self.queue_actor = WebRtcAVQueueActor.options(
name="WebRtcAVQueueActor",
get_if_exists=True,
).remote()
self._out_video_frame = None
def set_looking_listening(self, looking, listening: bool):
with self._lock:
self._looking = looking
self._listening = listening
async def queued_video_frames_callback(
self,
frames: List[av.VideoFrame],
) -> av.VideoFrame:
updated_frames = []
try:
with self._lock:
should_look = self._looking
next_out_video_frame = await self.queue_actor.get_out_video_frame.remote()
if next_out_video_frame is not None:
self._out_video_frame = next_out_video_frame
for i, frame in enumerate(frames):
user_image = frame.to_ndarray(format="rgb24")
if should_look:
shared_tensor_ref = ray.put(user_image)
await self.queue_actor.enqueue_in_video_frame.remote(shared_tensor_ref)
if self._out_video_frame is not None:
frame = self._out_video_frame
# resize user image to 1/4 size
user_frame = cv2.resize(user_image, (user_image.shape[1]//4, user_image.shape[0]//4), interpolation=cv2.INTER_AREA)
# flip horizontally
user_frame = cv2.flip(user_frame, 1)
x_user = 0
y_user = frame.shape[0] - user_frame.shape[0]
final_frame = frame.copy()
final_frame[y_user:y_user+user_frame.shape[0], x_user:x_user+user_frame.shape[1]] = user_frame
frame = av.VideoFrame.from_ndarray(final_frame, format="rgb24")
updated_frames.append(frame)
# print (f"tesnor len: {len(shared_tensor)}, tensor shape: {shared_tensor.shape}, tensor type:{shared_tensor.dtype} tensor ref: {shared_tensor_ref}")
except Exception as e:
print (e)
return updated_frames
async def queued_audio_frames_callback(
self,
frames: List[av.AudioFrame],
) -> av.AudioFrame:
try:
with self._lock:
should_listed = self._listening
sound_chunk = pydub.AudioSegment.empty()
if len(frames) > 0 and should_listed:
for frame in frames:
sound = pydub.AudioSegment(
data=frame.to_ndarray().tobytes(),
sample_width=frame.format.bytes,
frame_rate=frame.sample_rate,
channels=len(frame.layout.channels),
)
sound = sound.set_channels(1)
sound = sound.set_frame_rate(self._audio_bit_rate)
sound_chunk += sound
shared_buffer = np.array(sound_chunk.get_array_of_samples())
shared_buffer_ref = ray.put(shared_buffer)
await self.queue_actor.enqueue_in_audio_frame.remote(shared_buffer_ref)
except Exception as e:
print (e)
# return empty frames to avoid echo
new_frames = []
try:
for frame in frames:
required_samples = frame.samples
# print (f"frame: {frame.format.name}, {frame.layout.name}, {frame.sample_rate}, {frame.samples}")
assert frame.format.bytes == 2
assert frame.format.name == 's16'
frame_as_bytes = await self.queue_actor.get_out_audio_frame.remote()
if frame_as_bytes:
# print(f"frame_as_bytes: {len(frame_as_bytes)}")
assert len(frame_as_bytes) == frame.samples * frame.format.bytes
samples = np.frombuffer(frame_as_bytes, dtype=np.int16)
else:
samples = np.zeros((required_samples * 2 * 1), dtype=np.int16)
if self._output_channels == 2:
samples = np.vstack((samples, samples)).reshape((-1,), order='F')
samples = samples.reshape(1, -1)
layout = 'stereo' if self._output_channels == 2 else 'mono'
new_frame = av.AudioFrame.from_ndarray(samples, format='s16', layout=layout)
new_frame.sample_rate = frame.sample_rate
new_frames.append(new_frame)
except Exception as e:
print (e)
return new_frames
async def get_in_audio_frames_async(self) -> List[av.AudioFrame]:
shared_buffers = await self.queue_actor.get_in_audio_frames.remote()
return shared_buffers
async def get_video_frames_async(self) -> List[av.AudioFrame]:
shared_tensors = await self.queue_actor.get_in_video_frames.remote()
return shared_tensors
def get_out_audio_queue(self)->Queue:
return self.queue_actor.get_out_audio_queue.remote()
def get_out_video_queue(self)->Queue:
return self.queue_actor.get_out_video_queue.remote()
|