sohojoe commited on
Commit
d91a673
·
1 Parent(s): ac35a95

first version streaming via webrtc but quality sucks

Browse files
charles_actor.py CHANGED
@@ -22,6 +22,13 @@ class CharlesActor:
22
  print("000")
23
  from streamlit_av_queue import StreamlitAVQueue
24
  self._streamlit_av_queue = StreamlitAVQueue()
 
 
 
 
 
 
 
25
 
26
  print("002")
27
  from speech_to_text_vosk_actor import SpeechToTextVoskActor
@@ -29,7 +36,7 @@ class CharlesActor:
29
 
30
  print("003")
31
  from respond_to_prompt_actor import RespondToPromptActor
32
- self._respond_to_prompt_actor = RespondToPromptActor.remote()
33
 
34
  self._debug_queue = [
35
  # "hello, how are you today?",
 
22
  print("000")
23
  from streamlit_av_queue import StreamlitAVQueue
24
  self._streamlit_av_queue = StreamlitAVQueue()
25
+ self._out_audio_queue = self._streamlit_av_queue.get_out_audio_queue()
26
+
27
+ print("001")
28
+ from ffmpeg_converter_actor import FFMpegConverterActor
29
+ self._ffmpeg_converter_actor = FFMpegConverterActor.remote(self._out_audio_queue)
30
+ await self._ffmpeg_converter_actor.start_process.remote()
31
+ self._ffmpeg_converter_actor.run.remote()
32
 
33
  print("002")
34
  from speech_to_text_vosk_actor import SpeechToTextVoskActor
 
36
 
37
  print("003")
38
  from respond_to_prompt_actor import RespondToPromptActor
39
+ self._respond_to_prompt_actor = RespondToPromptActor.remote(self._ffmpeg_converter_actor)
40
 
41
  self._debug_queue = [
42
  # "hello, how are you today?",
debug_app.py CHANGED
@@ -61,6 +61,7 @@ def process_frame(old_frame):
61
 
62
  if not converter_queue.empty():
63
  frame_as_bytes = converter_queue.get()
 
64
  samples = np.frombuffer(frame_as_bytes, dtype=np.int16)
65
  else:
66
  # create a byte array of zeros
 
61
 
62
  if not converter_queue.empty():
63
  frame_as_bytes = converter_queue.get()
64
+ # print(f"frame_as_bytes: {len(frame_as_bytes)}")
65
  samples = np.frombuffer(frame_as_bytes, dtype=np.int16)
66
  else:
67
  # create a byte array of zeros
ffmpeg_converter_actor.py CHANGED
@@ -7,7 +7,7 @@ from ray.util.queue import Queue
7
  class FFMpegConverterActor:
8
  def __init__(self, queue: Queue, buffer_size: int = 1920, output_format: str='s16le'):
9
  self.queue = queue
10
- self.buffer_size = 1920
11
  self.output_format = output_format
12
 
13
  self.input_pipe = None
@@ -17,7 +17,8 @@ class FFMpegConverterActor:
17
 
18
  async def run(self):
19
  while True:
20
- chunk = await self.output_pipe.read(self.buffer_size)
 
21
  await self.queue.put_async(chunk)
22
 
23
  async def start_process(self):
@@ -41,7 +42,7 @@ class FFMpegConverterActor:
41
  self.output_pipe = self.process.stdout
42
 
43
  assert self.input_pipe is not None, "input_pipe was not initialized"
44
- print (f"input_pipe: {self.input_pipe}")
45
 
46
  async def push_chunk(self, chunk):
47
  try:
 
7
  class FFMpegConverterActor:
8
  def __init__(self, queue: Queue, buffer_size: int = 1920, output_format: str='s16le'):
9
  self.queue = queue
10
+ self.buffer_size = buffer_size
11
  self.output_format = output_format
12
 
13
  self.input_pipe = None
 
17
 
18
  async def run(self):
19
  while True:
20
+ chunk = await self.output_pipe.readexactly(self.buffer_size)
21
+ # print(f"FFMpegConverterActor: read {len(chunk)} bytes")
22
  await self.queue.put_async(chunk)
23
 
24
  async def start_process(self):
 
42
  self.output_pipe = self.process.stdout
43
 
44
  assert self.input_pipe is not None, "input_pipe was not initialized"
45
+ # print (f"input_pipe: {self.input_pipe}")
46
 
47
  async def push_chunk(self, chunk):
48
  try:
respond_to_prompt_actor.py CHANGED
@@ -71,15 +71,34 @@ class SpeechToSpeakerActor:
71
  async def run(self):
72
  while True:
73
  audio_chunk = await self.input_queue.get_async()
 
74
  self.chat_service.enqueue_speech_bytes_to_play([audio_chunk])
75
 
76
  def cancel(self):
77
  while not self.input_queue.empty():
78
  self.input_queue.get()
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  @ray.remote
81
  class RespondToPromptActor:
82
- def __init__(self):
83
  voice_id="2OviOUQc1JsQRQgNkVBj"
84
  self.prompt_queue = Queue(maxsize=100)
85
  self.llm_sentence_queue = Queue(maxsize=100)
@@ -87,18 +106,19 @@ class RespondToPromptActor:
87
 
88
  self.prompt_to_llm = PromptToLLMActor.remote(self.prompt_queue, self.llm_sentence_queue, voice_id)
89
  self.llm_sentence_to_speech = LLMSentanceToSpeechActor.remote(self.llm_sentence_queue, self.speech_chunk_queue, voice_id)
90
- self.speech_to_speaker = SpeechToSpeakerActor.remote(self.speech_chunk_queue, voice_id)
 
91
 
92
  # Start the pipeline components.
93
  self.prompt_to_llm.run.remote()
94
  self.llm_sentence_to_speech.run.remote()
95
- self.speech_to_speaker.run.remote()
96
 
97
  def enqueue_prompt(self, prompt):
98
  print("flush anything queued")
99
  prompt_to_llm_future = self.prompt_to_llm.cancel.remote()
100
  llm_sentence_to_speech_future = self.llm_sentence_to_speech.cancel.remote()
101
- speech_to_speaker_future = self.speech_to_speaker.cancel.remote()
102
  ray.get([
103
  prompt_to_llm_future,
104
  llm_sentence_to_speech_future,
 
71
  async def run(self):
72
  while True:
73
  audio_chunk = await self.input_queue.get_async()
74
+ # print (f"Got audio chunk {len(audio_chunk)}")
75
  self.chat_service.enqueue_speech_bytes_to_play([audio_chunk])
76
 
77
  def cancel(self):
78
  while not self.input_queue.empty():
79
  self.input_queue.get()
80
 
81
+ @ray.remote
82
+ class SpeechToConverterActor:
83
+ def __init__(self, input_queue, ffmpeg_converter_actor):
84
+ load_dotenv()
85
+ self.input_queue = input_queue
86
+ self.ffmpeg_converter_actor = ffmpeg_converter_actor
87
+
88
+ async def run(self):
89
+ while True:
90
+ audio_chunk = await self.input_queue.get_async()
91
+ # print (f"Got audio chunk {len(audio_chunk)}")
92
+ await self.ffmpeg_converter_actor.push_chunk.remote(audio_chunk)
93
+
94
+ def cancel(self):
95
+ while not self.input_queue.empty():
96
+ self.input_queue.get()
97
+
98
+
99
  @ray.remote
100
  class RespondToPromptActor:
101
+ def __init__(self, ffmpeg_converter_actor):
102
  voice_id="2OviOUQc1JsQRQgNkVBj"
103
  self.prompt_queue = Queue(maxsize=100)
104
  self.llm_sentence_queue = Queue(maxsize=100)
 
106
 
107
  self.prompt_to_llm = PromptToLLMActor.remote(self.prompt_queue, self.llm_sentence_queue, voice_id)
108
  self.llm_sentence_to_speech = LLMSentanceToSpeechActor.remote(self.llm_sentence_queue, self.speech_chunk_queue, voice_id)
109
+ # self.speech_output = SpeechToSpeakerActor.remote(self.speech_chunk_queue, voice_id)
110
+ self.speech_output = SpeechToConverterActor.remote(self.speech_chunk_queue, ffmpeg_converter_actor)
111
 
112
  # Start the pipeline components.
113
  self.prompt_to_llm.run.remote()
114
  self.llm_sentence_to_speech.run.remote()
115
+ self.speech_output.run.remote()
116
 
117
  def enqueue_prompt(self, prompt):
118
  print("flush anything queued")
119
  prompt_to_llm_future = self.prompt_to_llm.cancel.remote()
120
  llm_sentence_to_speech_future = self.llm_sentence_to_speech.cancel.remote()
121
+ speech_to_speaker_future = self.speech_output.cancel.remote()
122
  ray.get([
123
  prompt_to_llm_future,
124
  llm_sentence_to_speech_future,
streamlit_av_queue.py CHANGED
@@ -12,6 +12,7 @@ import torch
12
 
13
  class StreamlitAVQueue:
14
  def __init__(self, audio_bit_rate=16000):
 
15
  self._audio_bit_rate = audio_bit_rate
16
  self.queue_actor = WebRtcAVQueueActor.options(
17
  name="WebRtcAVQueueActor",
@@ -56,14 +57,28 @@ class StreamlitAVQueue:
56
 
57
  # return empty frames to avoid echo
58
  new_frames = []
59
- for frame in frames:
60
- input_array = frame.to_ndarray()
61
- new_frame = av.AudioFrame.from_ndarray(
62
- np.zeros(input_array.shape, dtype=input_array.dtype),
63
- layout=frame.layout.name,
64
- )
65
- new_frame.sample_rate = frame.sample_rate
66
- new_frames.append(new_frame)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  return new_frames
68
 
69
  async def get_in_audio_frames_async(self) -> List[av.AudioFrame]:
@@ -72,4 +87,10 @@ class StreamlitAVQueue:
72
 
73
  async def get_video_frames_async(self) -> List[av.AudioFrame]:
74
  shared_tensors = await self.queue_actor.get_in_video_frames.remote()
75
- return shared_tensors
 
 
 
 
 
 
 
12
 
13
  class StreamlitAVQueue:
14
  def __init__(self, audio_bit_rate=16000):
15
+ self._output_channels = 2
16
  self._audio_bit_rate = audio_bit_rate
17
  self.queue_actor = WebRtcAVQueueActor.options(
18
  name="WebRtcAVQueueActor",
 
57
 
58
  # return empty frames to avoid echo
59
  new_frames = []
60
+ try:
61
+ for frame in frames:
62
+ required_samples = frame.samples
63
+ # print (f"frame: {frame.format.name}, {frame.layout.name}, {frame.sample_rate}, {frame.samples}")
64
+ assert frame.format.bytes == 2
65
+ assert frame.format.name == 's16'
66
+ frame_as_bytes = await self.queue_actor.get_out_audio_frame.remote()
67
+ if frame_as_bytes:
68
+ # print(f"frame_as_bytes: {len(frame_as_bytes)}")
69
+ assert len(frame_as_bytes) == frame.samples * frame.format.bytes
70
+ samples = np.frombuffer(frame_as_bytes, dtype=np.int16)
71
+ else:
72
+ samples = np.zeros((required_samples * 2 * 1), dtype=np.int16)
73
+ if self._output_channels == 2:
74
+ samples = np.vstack((samples, samples)).reshape((-1,), order='F')
75
+ samples = samples.reshape(1, -1)
76
+ layout = 'stereo' if self._output_channels == 2 else 'mono'
77
+ new_frame = av.AudioFrame.from_ndarray(samples, format='s16', layout=layout)
78
+ new_frame.sample_rate = frame.sample_rate
79
+ new_frames.append(new_frame)
80
+ except Exception as e:
81
+ print (e)
82
  return new_frames
83
 
84
  async def get_in_audio_frames_async(self) -> List[av.AudioFrame]:
 
87
 
88
  async def get_video_frames_async(self) -> List[av.AudioFrame]:
89
  shared_tensors = await self.queue_actor.get_in_video_frames.remote()
90
+ return shared_tensors
91
+
92
+ def get_out_audio_queue(self):
93
+ return self.queue_actor.get_out_audio_queue.remote()
94
+
95
+ # def get_out_audio_frame(self):
96
+ # return self.queue_actor.get_out_audio_frame.remote()
webrtc_av_queue_actor.py CHANGED
@@ -10,6 +10,8 @@ class WebRtcAVQueueActor:
10
  def __init__(self):
11
  self.in_audio_queue = Queue(maxsize=100) # Adjust the size as needed
12
  self.in_video_queue = Queue(maxsize=100) # Adjust the size as needed
 
 
13
 
14
  def enqueue_in_video_frame(self, shared_tensor_ref):
15
  if self.in_video_queue.full():
@@ -41,3 +43,12 @@ class WebRtcAVQueueActor:
41
  shared_tensor_ref = self.in_video_queue.get()
42
  video_frames.append(shared_tensor_ref)
43
  return video_frames
 
 
 
 
 
 
 
 
 
 
10
  def __init__(self):
11
  self.in_audio_queue = Queue(maxsize=100) # Adjust the size as needed
12
  self.in_video_queue = Queue(maxsize=100) # Adjust the size as needed
13
+ self.out_audio_queue = Queue(maxsize=100) # Adjust the size as needed
14
+
15
 
16
  def enqueue_in_video_frame(self, shared_tensor_ref):
17
  if self.in_video_queue.full():
 
43
  shared_tensor_ref = self.in_video_queue.get()
44
  video_frames.append(shared_tensor_ref)
45
  return video_frames
46
+
47
+ def get_out_audio_queue(self):
48
+ return self.out_audio_queue
49
+
50
+ async def get_out_audio_frame(self):
51
+ if self.out_audio_queue.empty():
52
+ return None
53
+ audio_frame = await self.out_audio_queue.get_async()
54
+ return audio_frame