Spaces:
Runtime error
Runtime error
File size: 7,674 Bytes
bcea2ea 1a63d97 afc1e50 bcea2ea 9b7ec10 87dcd10 149eeaf bcea2ea 149eeaf bcea2ea 1a63d97 afc1e50 149eeaf bcea2ea afc1e50 87dcd10 149eeaf bcea2ea 149eeaf 87dcd10 149eeaf afc1e50 df0ea75 afc1e50 df0ea75 afc1e50 df0ea75 bcea2ea 149eeaf bcea2ea 1a63d97 afc1e50 149eeaf bcea2ea 87dcd10 afc1e50 149eeaf 87dcd10 149eeaf afc1e50 df0ea75 afc1e50 df0ea75 afc1e50 df0ea75 afc1e50 bcea2ea b6ba8eb bcea2ea b6ba8eb afc1e50 b6ba8eb bcea2ea d91a673 149eeaf d91a673 b6ba8eb d91a673 87dcd10 cf5e7f4 d91a673 0d27fd9 d91a673 0d27fd9 d91a673 bcea2ea 149eeaf bcea2ea 149eeaf b6ba8eb bcea2ea 149eeaf d91a673 149eeaf bcea2ea d91a673 bcea2ea df0ea75 afc1e50 0d27fd9 b6ba8eb df0ea75 afc1e50 0d27fd9 ae52b65 df0ea75 795c382 afc1e50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import ray
from ray.util.queue import Queue
from dotenv import load_dotenv
from local_speaker_service import LocalSpeakerService
from text_to_speech_service import TextToSpeechService
from chat_service import ChatService
import asyncio
# from ray.actor import ActorHandle
from ffmpeg_converter_actor import FFMpegConverterActor
from agent_response import AgentResponse
from environment_state_actor import EnvironmentStateActor
from agent_state_actor import AgentStateActor
from agent_state_actor import AgentState
import json
@ray.remote
class PromptToLLMActor:
def __init__(
self,
environment_state_actor:EnvironmentStateActor,
input_queue:Queue,
output_queue:Queue):
load_dotenv()
self.input_queue = input_queue
self.output_queue = output_queue
self.chat_service = ChatService()
self.cancel_event = None
self.environment_state_actor = environment_state_actor
async def run(self):
while True:
prompt = await self.input_queue.get_async()
self.cancel_event = asyncio.Event()
agent_response = AgentResponse(prompt)
async for text, is_complete_sentance in self.chat_service.get_responses_as_sentances_async(prompt, self.cancel_event):
if self.chat_service.ignore_sentence(text):
is_complete_sentance = False
if not is_complete_sentance:
agent_response['llm_preview'] = text
await self.environment_state_actor.set_llm_preview.remote(text)
continue
agent_response['llm_preview'] = ''
agent_response['llm_sentence'] = text
agent_response['llm_sentences'].append(text)
await self.environment_state_actor.add_llm_response_and_clear_llm_preview.remote(text)
print(f"{agent_response['llm_sentence']} id: {agent_response['llm_sentence_id']} from prompt: {agent_response['prompt']}")
sentence_response = agent_response.make_copy()
await self.output_queue.put_async(sentence_response)
agent_response['llm_sentence_id'] += 1
async def cancel(self):
if self.cancel_event:
self.cancel_event.set()
while not self.input_queue.empty():
await self.input_queue.get_async()
while not self.output_queue.empty():
await self.output_queue.get_async()
@ray.remote
class LLMSentanceToSpeechActor:
def __init__(
self,
environment_state_actor:EnvironmentStateActor,
input_queue,
output_queue,
voice_id):
load_dotenv()
self.input_queue = input_queue
self.output_queue = output_queue
self.tts_service = TextToSpeechService(voice_id=voice_id)
self.cancel_event = None
self.environment_state_actor = environment_state_actor
async def run(self):
while True:
sentence_response = await self.input_queue.get_async()
self.cancel_event = asyncio.Event()
chunk_count = 0
async for chunk_response in self.tts_service.get_speech_chunks_async(sentence_response, self.cancel_event):
chunk_response = chunk_response.make_copy()
await self.output_queue.put_async(chunk_response)
chunk_response = {
'prompt': sentence_response['prompt'],
'llm_sentence_id': sentence_response['llm_sentence_id'],
'chunk_count': chunk_count,
}
chunk_id_json = json.dumps(chunk_response)
await self.environment_state_actor.add_tts_raw_chunk_id.remote(chunk_id_json)
chunk_count += 1
async def cancel(self):
if self.cancel_event:
self.cancel_event.set()
while not self.input_queue.empty():
await self.input_queue.get_async()
while not self.output_queue.empty():
await self.output_queue.get_async()
# legacy code for playing from local speaker
# @ray.remote
# class SpeechToSpeakerActor:
# def __init__(self, input_queue, voice_id):
# load_dotenv()
# self.input_queue = input_queue
# self.speaker_service = LocalSpeakerService()
# async def run(self):
# while True:
# audio_chunk = await self.input_queue.get_async()
# # print (f"Got audio chunk {len(audio_chunk)}")
# self.speaker_service.add_audio_stream([audio_chunk])
# async def cancel(self):
# while not self.input_queue.empty():
# await self.input_queue.get_async()
@ray.remote
class SpeechToConverterActor:
def __init__(
self,
input_queue:Queue,
ffmpeg_converter_actor:FFMpegConverterActor):
load_dotenv()
self.input_queue = input_queue
self.ffmpeg_converter_actor = ffmpeg_converter_actor
async def run(self):
await self.ffmpeg_converter_actor.start_process.remote()
self.ffmpeg_converter_actor.run.remote()
while True:
chunk_response = await self.input_queue.get_async()
audio_chunk_ref = chunk_response['tts_raw_chunk_ref']
audio_chunk = ray.get(audio_chunk_ref)
await self.ffmpeg_converter_actor.push_chunk.remote(audio_chunk)
async def cancel(self):
while not self.input_queue.empty():
await self.input_queue.get_async()
@ray.remote
class RespondToPromptActor:
def __init__(
self,
environment_state_actor:EnvironmentStateActor,
out_audio_queue):
voice_id="2OviOUQc1JsQRQgNkVBj"
self.prompt_queue = Queue(maxsize=100)
self.llm_sentence_queue = Queue(maxsize=100)
self.speech_chunk_queue = Queue(maxsize=100)
self.environment_state_actor = environment_state_actor
self.ffmpeg_converter_actor = FFMpegConverterActor.remote(out_audio_queue)
self.prompt_to_llm = PromptToLLMActor.remote(
self.environment_state_actor,
self.prompt_queue,
self.llm_sentence_queue)
self.llm_sentence_to_speech = LLMSentanceToSpeechActor.remote(
self.environment_state_actor,
self.llm_sentence_queue,
self.speech_chunk_queue,
voice_id)
# self.speech_output = SpeechToSpeakerActor.remote(self.speech_chunk_queue, voice_id)
self.speech_output = SpeechToConverterActor.remote(
self.speech_chunk_queue,
self.ffmpeg_converter_actor)
# Start the pipeline components.
self.prompt_to_llm.run.remote()
self.llm_sentence_to_speech.run.remote()
self.speech_output.run.remote()
async def enqueue_prompt(self, prompt):
print("flush anything queued")
prompt_to_llm_future = self.prompt_to_llm.cancel.remote()
llm_sentence_to_speech_future = self.llm_sentence_to_speech.cancel.remote()
speech_output_future = self.speech_output.cancel.remote()
ffmpeg_converter_future = self.ffmpeg_converter_actor.flush_output_queue.remote()
await asyncio.gather(
prompt_to_llm_future,
llm_sentence_to_speech_future,
speech_output_future,
ffmpeg_converter_future,
)
if len(prompt) > 0: # handles case where we just want to flush
await self.prompt_queue.put_async(prompt)
print("Enqueued prompt")
|