File size: 5,021 Bytes
bcea2ea
 
 
1a63d97
 
 
afc1e50
bcea2ea
 
 
 
0d27fd9
bcea2ea
 
 
1a63d97
afc1e50
bcea2ea
 
 
afc1e50
 
 
bcea2ea
 
 
afc1e50
 
df0ea75
afc1e50
 
 
df0ea75
afc1e50
df0ea75
bcea2ea
 
 
 
 
 
 
1a63d97
afc1e50
bcea2ea
 
 
afc1e50
 
1a63d97
afc1e50
 
df0ea75
afc1e50
 
 
df0ea75
afc1e50
df0ea75
afc1e50
bcea2ea
 
 
 
 
 
1a63d97
bcea2ea
 
 
afc1e50
d91a673
1a63d97
afc1e50
df0ea75
afc1e50
df0ea75
bcea2ea
d91a673
 
0d27fd9
d91a673
 
 
 
 
 
 
 
 
 
0d27fd9
d91a673
0d27fd9
d91a673
 
bcea2ea
 
d91a673
bcea2ea
 
 
 
ae52b65
bcea2ea
1a63d97
bcea2ea
d91a673
 
bcea2ea
 
 
 
d91a673
bcea2ea
df0ea75
afc1e50
 
 
0d27fd9
ae52b65
df0ea75
afc1e50
 
0d27fd9
ae52b65
df0ea75
0d27fd9
afc1e50
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import ray
from ray.util.queue import Queue
from dotenv import load_dotenv
from local_speaker_service import LocalSpeakerService
from text_to_speech_service import TextToSpeechService
from chat_service import ChatService
import asyncio
# from ray.actor import ActorHandle

@ray.remote
class PromptToLLMActor:
    def __init__(self, input_queue:Queue, output_queue:Queue):
        load_dotenv()
        self.input_queue = input_queue
        self.output_queue = output_queue
        self.chat_service = ChatService()
        self.cancel_event = None

    async def run(self):
        while True:
            prompt = await self.input_queue.get_async()
            self.cancel_event = asyncio.Event()
            async for sentence in self.chat_service.get_responses_as_sentances_async(prompt, self.cancel_event):
                if self.chat_service.ignore_sentence(sentence):
                    continue
                print(f"{sentence}")
                await self.output_queue.put_async(sentence)
                
    async def cancel(self):
        if self.cancel_event:
            self.cancel_event.set()
        while not self.input_queue.empty():
            await self.input_queue.get_async()
        while not self.output_queue.empty():
            await self.output_queue.get_async()

@ray.remote
class LLMSentanceToSpeechActor:
    def __init__(self, input_queue, output_queue, voice_id):
        load_dotenv()
        self.input_queue = input_queue
        self.output_queue = output_queue
        self.tts_service = TextToSpeechService(voice_id=voice_id)
        self.cancel_event = None

    async def run(self):
        while True:
            sentance = await self.input_queue.get_async()
            self.cancel_event = asyncio.Event()
            async for chunk in self.tts_service.get_speech_chunks_async(sentance, self.cancel_event):
                await self.output_queue.put_async(chunk)

    async def cancel(self):
        if self.cancel_event:
            self.cancel_event.set()
        while not self.input_queue.empty():
            await self.input_queue.get_async()
        while not self.output_queue.empty():
            await self.output_queue.get_async()


@ray.remote
class SpeechToSpeakerActor:
    def __init__(self, input_queue, voice_id):
        load_dotenv()
        self.input_queue = input_queue
        self.speaker_service = LocalSpeakerService()

    async def run(self):
        while True:
            audio_chunk = await self.input_queue.get_async()
            # print (f"Got audio chunk {len(audio_chunk)}")
            self.speaker_service.add_audio_stream([audio_chunk])
            
    async def cancel(self):
        while not self.input_queue.empty():
            await self.input_queue.get_async()            

@ray.remote
class SpeechToConverterActor:
    def __init__(self, input_queue:Queue, ffmpeg_converter_actor:Queue):
        load_dotenv()
        self.input_queue = input_queue
        self.ffmpeg_converter_actor = ffmpeg_converter_actor

    async def run(self):
        while True:
            audio_chunk = await self.input_queue.get_async()
            # print (f"Got audio chunk {len(audio_chunk)}")
            await self.ffmpeg_converter_actor.push_chunk.remote(audio_chunk)
            
    async def cancel(self):
        while not self.input_queue.empty():
            await self.input_queue.get_async()


@ray.remote
class RespondToPromptActor:
    def __init__(self, ffmpeg_converter_actor):
        voice_id="2OviOUQc1JsQRQgNkVBj"
        self.prompt_queue = Queue(maxsize=100)
        self.llm_sentence_queue = Queue(maxsize=100)
        self.speech_chunk_queue = Queue(maxsize=100)
        self.ffmepg_converter_actor = ffmpeg_converter_actor
        
        self.prompt_to_llm = PromptToLLMActor.remote(self.prompt_queue, self.llm_sentence_queue)
        self.llm_sentence_to_speech = LLMSentanceToSpeechActor.remote(self.llm_sentence_queue, self.speech_chunk_queue, voice_id)
        # self.speech_output = SpeechToSpeakerActor.remote(self.speech_chunk_queue, voice_id)
        self.speech_output = SpeechToConverterActor.remote(self.speech_chunk_queue, ffmpeg_converter_actor)

        # Start the pipeline components.
        self.prompt_to_llm.run.remote()
        self.llm_sentence_to_speech.run.remote()
        self.speech_output.run.remote()
            
    async def enqueue_prompt(self, prompt):
        print("flush anything queued")
        prompt_to_llm_future = self.prompt_to_llm.cancel.remote()
        llm_sentence_to_speech_future = self.llm_sentence_to_speech.cancel.remote()
        speech_output_future = self.speech_output.cancel.remote()
        ffmpeg_converter_future = self.ffmepg_converter_actor.flush_output_queue.remote()
        await asyncio.gather(
            prompt_to_llm_future,
            llm_sentence_to_speech_future,
            speech_output_future,
            ffmpeg_converter_future,
        )
        await self.prompt_queue.put_async(prompt)
        print("Enqueued prompt")