Spaces:
Sleeping
Sleeping
File size: 5,021 Bytes
bcea2ea 1a63d97 afc1e50 bcea2ea 0d27fd9 bcea2ea 1a63d97 afc1e50 bcea2ea afc1e50 bcea2ea afc1e50 df0ea75 afc1e50 df0ea75 afc1e50 df0ea75 bcea2ea 1a63d97 afc1e50 bcea2ea afc1e50 1a63d97 afc1e50 df0ea75 afc1e50 df0ea75 afc1e50 df0ea75 afc1e50 bcea2ea 1a63d97 bcea2ea afc1e50 d91a673 1a63d97 afc1e50 df0ea75 afc1e50 df0ea75 bcea2ea d91a673 0d27fd9 d91a673 0d27fd9 d91a673 0d27fd9 d91a673 bcea2ea d91a673 bcea2ea ae52b65 bcea2ea 1a63d97 bcea2ea d91a673 bcea2ea d91a673 bcea2ea df0ea75 afc1e50 0d27fd9 ae52b65 df0ea75 afc1e50 0d27fd9 ae52b65 df0ea75 0d27fd9 afc1e50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import ray
from ray.util.queue import Queue
from dotenv import load_dotenv
from local_speaker_service import LocalSpeakerService
from text_to_speech_service import TextToSpeechService
from chat_service import ChatService
import asyncio
# from ray.actor import ActorHandle
@ray.remote
class PromptToLLMActor:
def __init__(self, input_queue:Queue, output_queue:Queue):
load_dotenv()
self.input_queue = input_queue
self.output_queue = output_queue
self.chat_service = ChatService()
self.cancel_event = None
async def run(self):
while True:
prompt = await self.input_queue.get_async()
self.cancel_event = asyncio.Event()
async for sentence in self.chat_service.get_responses_as_sentances_async(prompt, self.cancel_event):
if self.chat_service.ignore_sentence(sentence):
continue
print(f"{sentence}")
await self.output_queue.put_async(sentence)
async def cancel(self):
if self.cancel_event:
self.cancel_event.set()
while not self.input_queue.empty():
await self.input_queue.get_async()
while not self.output_queue.empty():
await self.output_queue.get_async()
@ray.remote
class LLMSentanceToSpeechActor:
def __init__(self, input_queue, output_queue, voice_id):
load_dotenv()
self.input_queue = input_queue
self.output_queue = output_queue
self.tts_service = TextToSpeechService(voice_id=voice_id)
self.cancel_event = None
async def run(self):
while True:
sentance = await self.input_queue.get_async()
self.cancel_event = asyncio.Event()
async for chunk in self.tts_service.get_speech_chunks_async(sentance, self.cancel_event):
await self.output_queue.put_async(chunk)
async def cancel(self):
if self.cancel_event:
self.cancel_event.set()
while not self.input_queue.empty():
await self.input_queue.get_async()
while not self.output_queue.empty():
await self.output_queue.get_async()
@ray.remote
class SpeechToSpeakerActor:
def __init__(self, input_queue, voice_id):
load_dotenv()
self.input_queue = input_queue
self.speaker_service = LocalSpeakerService()
async def run(self):
while True:
audio_chunk = await self.input_queue.get_async()
# print (f"Got audio chunk {len(audio_chunk)}")
self.speaker_service.add_audio_stream([audio_chunk])
async def cancel(self):
while not self.input_queue.empty():
await self.input_queue.get_async()
@ray.remote
class SpeechToConverterActor:
def __init__(self, input_queue:Queue, ffmpeg_converter_actor:Queue):
load_dotenv()
self.input_queue = input_queue
self.ffmpeg_converter_actor = ffmpeg_converter_actor
async def run(self):
while True:
audio_chunk = await self.input_queue.get_async()
# print (f"Got audio chunk {len(audio_chunk)}")
await self.ffmpeg_converter_actor.push_chunk.remote(audio_chunk)
async def cancel(self):
while not self.input_queue.empty():
await self.input_queue.get_async()
@ray.remote
class RespondToPromptActor:
def __init__(self, ffmpeg_converter_actor):
voice_id="2OviOUQc1JsQRQgNkVBj"
self.prompt_queue = Queue(maxsize=100)
self.llm_sentence_queue = Queue(maxsize=100)
self.speech_chunk_queue = Queue(maxsize=100)
self.ffmepg_converter_actor = ffmpeg_converter_actor
self.prompt_to_llm = PromptToLLMActor.remote(self.prompt_queue, self.llm_sentence_queue)
self.llm_sentence_to_speech = LLMSentanceToSpeechActor.remote(self.llm_sentence_queue, self.speech_chunk_queue, voice_id)
# self.speech_output = SpeechToSpeakerActor.remote(self.speech_chunk_queue, voice_id)
self.speech_output = SpeechToConverterActor.remote(self.speech_chunk_queue, ffmpeg_converter_actor)
# Start the pipeline components.
self.prompt_to_llm.run.remote()
self.llm_sentence_to_speech.run.remote()
self.speech_output.run.remote()
async def enqueue_prompt(self, prompt):
print("flush anything queued")
prompt_to_llm_future = self.prompt_to_llm.cancel.remote()
llm_sentence_to_speech_future = self.llm_sentence_to_speech.cancel.remote()
speech_output_future = self.speech_output.cancel.remote()
ffmpeg_converter_future = self.ffmepg_converter_actor.flush_output_queue.remote()
await asyncio.gather(
prompt_to_llm_future,
llm_sentence_to_speech_future,
speech_output_future,
ffmpeg_converter_future,
)
await self.prompt_queue.put_async(prompt)
print("Enqueued prompt")
|