Spaces:
Sleeping
Sleeping
File size: 21,450 Bytes
058946e 063007b 19d9877 063007b 5a065a9 6378aa9 058946e 61a449e 058946e 20d1f73 531dc6f 5a065a9 2dcaf1e 5a065a9 19d9877 d4a4126 70b1804 d4a4126 70b1804 d4a4126 2b04bca d4a4126 2b04bca 063007b 058946e d5547f7 058946e a178205 058946e 20d1f73 058946e a178205 058946e 48844f7 058946e 628f018 058946e 7133f27 ae42e7b 6d8d14c 058946e 6d8d14c 0df2b65 058946e a178205 058946e b44b510 058946e b44b510 058946e b44b510 058946e b44b510 058946e 7574a38 cf1d664 7574a38 058946e e295e9c 058946e 70b1804 058946e 70b1804 058946e 70b1804 9e8f99e 058946e d4a4126 9e8f99e ee81677 7337797 9e8f99e d4a4126 7337797 058946e 70b1804 d4a4126 7c607b7 d4a4126 058946e d4a4126 058946e 3423c18 ea7e28a 6378aa9 51f5ed2 6378aa9 fe273ac 4287b9c 058946e d4a4126 058946e 1b5915f 19c1074 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
import torch, os, traceback, sys, warnings, shutil, numpy as np
import gradio as gr
import librosa
import asyncio
import rarfile
import edge_tts
import yt_dlp
import ffmpeg
import gdown
import subprocess
import wave
import soundfile as sf
from scipy.io import wavfile
from datetime import datetime
from urllib.parse import urlparse
from mega import Mega
from flask import Flask, request, jsonify, send_file
import base64
import tempfile
import os
import werkzeug
from pydub import AudioSegment
app = Flask(__name__)
now_dir = os.getcwd()
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
split_model="htdemucs"
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from fairseq import checkpoint_utils
from vc_infer_pipeline import VC
from config import Config
config = Config()
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
hubert_model = None
f0method_mode = ["pm", "harvest", "crepe"]
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
if os.path.isfile("rmvpe.pt"):
f0method_mode.insert(2, "rmvpe")
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
load_hubert()
weight_root = "weights"
index_root = "weights/index"
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
for file in model_files:
if file.endswith(".pth"):
weights_model.append(file)
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
def check_models():
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
for file in model_files:
if file.endswith(".pth"):
weights_model.append(file)
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
return (
gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
gr.Dropdown.update(choices=sorted(weights_index))
)
def clean():
return (
gr.Dropdown.update(value=""),
gr.Slider.update(visible=False)
)
@app.route('/convert_voice', methods=['POST'])
def api_convert_voice():
spk_id = request.form['spk_id']
voice_transform = request.form['voice_transform']
# The file part
if 'file' not in request.files:
return jsonify({"error": "No file part"}), 400
file = request.files['file']
if file.filename == '':
return jsonify({"error": "No selected file"}), 400
# Save the file to a temporary path
filename = werkzeug.utils.secure_filename(file.filename)
input_audio_path = os.path.join(tmp, f"{spk_id}_input_audio.{filename.split('.')[-1]}")
file.save(input_audio_path)
#split audio
cut_vocal_and_inst(input_audio_path,spk_id)
print("audio splitting performed")
vocal_path = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
output_path = convert_voice(spk_id, vocal_path, voice_transform)
output_path1= combine_vocal_and_inst(output_path,inst)
print(output_path1)
if os.path.exists(output_path1):
return send_file(output_path1, as_attachment=True)
else:
return jsonify({"error": "File not found."}), 404
def convert_voice(spk_id, input_audio_path, voice_transform):
get_vc(spk_id,0.5)
output_audio_path = vc_single(
sid=0,
input_audio_path=input_audio_path,
f0_up_key=voice_transform, # Assuming voice_transform corresponds to f0_up_key
f0_file=None ,
f0_method="rmvpe",
file_index=spk_id, # Assuming file_index_path corresponds to file_index
index_rate=0.75,
filter_radius=3,
resample_sr=0,
rms_mix_rate=0.25,
protect=0.33 # Adjusted from protect_rate to protect to match the function signature
)
print(output_audio_path)
return output_audio_path
def vc_single(
sid,
input_audio_path,
f0_up_key,
f0_file,
f0_method,
file_index,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
global tgt_sr, net_g, vc, hubert_model, version, cpt
try:
logs = []
print(f"Converting...")
audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
print(f"found audio ")
f0_up_key = int(f0_up_key)
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
print("loaded hubert")
if_f0 = 1
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=f0_file
)
if resample_sr >= 16000 and tgt_sr != resample_sr:
tgt_sr = resample_sr
index_info = (
"Using index:%s." % file_index
if os.path.exists(file_index)
else "Index not used."
)
print("writing to FS")
output_file_path = os.path.join("output", f"converted_audio_{sid}.wav") # Adjust path as needed
os.makedirs(os.path.dirname(output_file_path), exist_ok=True) # Create the output directory if it doesn't exist
print("create dir")
# Save the audio file using the target sampling rate
sf.write(output_file_path, audio_opt, tgt_sr)
print("wrote to FS")
# Return the path to the saved file along with any other information
return output_file_path
except:
info = traceback.format_exc()
return info, (None, None)
def get_vc(sid, to_return_protect0):
global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
if sid == "" or sid == []:
global hubert_model
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
print("clean_empty_cache")
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
###楼下不这么折腾清理不干净
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g, cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
cpt = None
return (
gr.Slider.update(maximum=2333, visible=False),
gr.Slider.update(visible=True),
gr.Dropdown.update(choices=sorted(weights_index), value=""),
gr.Markdown.update(value="# <center> No model selected")
)
print(f"Loading {sid} model...")
selected_model = sid[:-4]
cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
if_f0 = cpt.get("f0", 1)
if if_f0 == 0:
to_return_protect0 = {
"visible": False,
"value": 0.5,
"__type__": "update",
}
else:
to_return_protect0 = {
"visible": True,
"value": to_return_protect0,
"__type__": "update",
}
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk = cpt["config"][-3]
weights_index = []
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
if weights_index == []:
selected_index = gr.Dropdown.update(value="")
else:
selected_index = gr.Dropdown.update(value=weights_index[0])
for index, model_index in enumerate(weights_index):
if selected_model in model_index:
selected_index = gr.Dropdown.update(value=weights_index[index])
break
return (
gr.Slider.update(maximum=n_spk, visible=True),
to_return_protect0,
selected_index,
gr.Markdown.update(
f'## <center> {selected_model}\n'+
f'### <center> RVC {version} Model'
)
)
def find_audio_files(folder_path, extensions):
audio_files = []
for root, dirs, files in os.walk(folder_path):
for file in files:
if any(file.endswith(ext) for ext in extensions):
audio_files.append(file)
return audio_files
def vc_multi(
spk_item,
vc_input,
vc_output,
vc_transform0,
f0method0,
file_index,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
):
global tgt_sr, net_g, vc, hubert_model, version, cpt
logs = []
logs.append("Converting...")
yield "\n".join(logs)
print()
try:
if os.path.exists(vc_input):
folder_path = vc_input
extensions = [".mp3", ".wav", ".flac", ".ogg"]
audio_files = find_audio_files(folder_path, extensions)
for index, file in enumerate(audio_files, start=1):
audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True)
input_audio_path = folder_path, file
f0_up_key = int(vc_transform0)
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
if_f0 = cpt.get("f0", 1)
audio_opt = vc.pipeline(
hubert_model,
net_g,
spk_item,
audio,
input_audio_path,
times,
f0_up_key,
f0method0,
file_index,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=None
)
if resample_sr >= 16000 and tgt_sr != resample_sr:
tgt_sr = resample_sr
output_path = f"{os.path.join(vc_output, file)}"
os.makedirs(os.path.join(vc_output), exist_ok=True)
sf.write(
output_path,
audio_opt,
tgt_sr,
)
info = f"{index} / {len(audio_files)} | {file}"
print(info)
logs.append(info)
yield "\n".join(logs)
else:
logs.append("Folder not found or path doesn't exist.")
yield "\n".join(logs)
except:
info = traceback.format_exc()
print(info)
logs.append(info)
yield "\n".join(logs)
def download_audio(url, audio_provider):
logs = []
os.makedirs("dl_audio", exist_ok=True)
if url == "":
logs.append("URL required!")
yield None, "\n".join(logs)
return None, "\n".join(logs)
if audio_provider == "Youtube":
logs.append("Downloading the audio...")
yield None, "\n".join(logs)
ydl_opts = {
'noplaylist': True,
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
"outtmpl": 'result/dl_audio/audio',
}
audio_path = "result/dl_audio/audio.wav"
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
logs.append("Download Complete.")
yield audio_path, "\n".join(logs)
def cut_vocal_and_inst_yt(split_model,spk_id):
logs = []
logs.append("Starting the audio splitting process...")
yield "\n".join(logs), None, None, None
command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output"
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
for line in result.stdout:
logs.append(line)
yield "\n".join(logs), None, None, None
print(result.stdout)
vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
logs.append("Audio splitting complete.")
yield "\n".join(logs), vocal, inst, vocal
def cut_vocal_and_inst(audio_path,spk_id):
vocal_path = "output/result/audio.wav"
os.makedirs("output/result", exist_ok=True)
#wavfile.write(vocal_path, audio_data[0], audio_data[1])
#logs.append("Starting the audio splitting process...")
#yield "\n".join(logs), None, None
print("before executing splitter")
command = f"demucs --two-stems=vocals -n {split_model} {audio_path} -o output"
#result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
print("Demucs process failed:", result.stderr)
else:
print("Demucs process completed successfully.")
print("after executing splitter")
#for line in result.stdout:
# logs.append(line)
# yield "\n".join(logs), None, None
result.wait()
print(result.stdout)
vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
#logs.append("Audio splitting complete.")
def combine_vocal_and_inst(vocal_path, inst_path):
vocal_volume=1
inst_volume=1
os.makedirs("output/result", exist_ok=True)
# Assuming vocal_path and inst_path are now directly passed as arguments
output_path = "output/result/combine.mp3"
#command = f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame "{output_path}"'
#command=f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex "amix=inputs=2:duration=longest" -b:a 320k -c:a libmp3lame "{output_path}"'
# Load the audio files
vocal = AudioSegment.from_file(vocal_path)
instrumental = AudioSegment.from_file(inst_path)
# Overlay the vocal track on top of the instrumental track
combined = vocal.overlay(instrumental)
# Export the result
combined.export(output_path, format="mp3")
#result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return output_path
#def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume):
# os.makedirs("output/result", exist_ok=True)
## output_path = "output/result/combine.mp3"
# inst_path = f"output/{split_model}/audio/no_vocals.wav"
#wavfile.write(vocal_path, audio_data[0], audio_data[1])
#command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
#result = subprocess.run(command.split(), stdout=subprocess.PIPE)
#print(result.stdout.decode())
#return output_path
def download_and_extract_models(urls):
logs = []
os.makedirs("zips", exist_ok=True)
os.makedirs(os.path.join("zips", "extract"), exist_ok=True)
os.makedirs(os.path.join(weight_root), exist_ok=True)
os.makedirs(os.path.join(index_root), exist_ok=True)
for link in urls.splitlines():
url = link.strip()
if not url:
raise gr.Error("URL Required!")
return "No URLs provided."
model_zip = urlparse(url).path.split('/')[-2] + '.zip'
model_zip_path = os.path.join('zips', model_zip)
logs.append(f"Downloading...")
yield "\n".join(logs)
if "drive.google.com" in url:
gdown.download(url, os.path.join("zips", "extract"), quiet=False)
elif "mega.nz" in url:
m = Mega()
m.download_url(url, 'zips')
else:
os.system(f"wget {url} -O {model_zip_path}")
logs.append(f"Extracting...")
yield "\n".join(logs)
for filename in os.listdir("zips"):
archived_file = os.path.join("zips", filename)
if filename.endswith(".zip"):
shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip')
elif filename.endswith(".rar"):
with rarfile.RarFile(archived_file, 'r') as rar:
rar.extractall(os.path.join("zips", "extract"))
for _, dirs, files in os.walk(os.path.join("zips", "extract")):
logs.append(f"Searching Model and Index...")
yield "\n".join(logs)
model = False
index = False
if files:
for file in files:
if file.endswith(".pth"):
basename = file[:-4]
shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file))
model = True
if file.endswith('.index') and "trained" not in file:
shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file))
index = True
else:
logs.append("No model in main folder.")
yield "\n".join(logs)
logs.append("Searching in subfolders...")
yield "\n".join(logs)
for sub_dir in dirs:
for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)):
for file in sub_files:
if file.endswith(".pth"):
basename = file[:-4]
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file))
model = True
if file.endswith('.index') and "trained" not in file:
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file))
index = True
shutil.rmtree(os.path.join("zips", "extract", sub_dir))
if index is False:
logs.append("Model only file, no Index file detected.")
yield "\n".join(logs)
logs.append("Download Completed!")
yield "\n".join(logs)
logs.append("Successfully download all models! Refresh your model list to load the model")
yield "\n".join(logs)
if __name__ == '__main__':
app.run(debug=False, port=5000,host='0.0.0.0') |