Spaces:
Sleeping
Sleeping
Upload infertest.py
Browse files- infertest.py +507 -0
infertest.py
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, os, traceback, sys, warnings, shutil, numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import librosa
|
4 |
+
import asyncio
|
5 |
+
import rarfile
|
6 |
+
import edge_tts
|
7 |
+
import yt_dlp
|
8 |
+
import ffmpeg
|
9 |
+
import gdown
|
10 |
+
import subprocess
|
11 |
+
import wave
|
12 |
+
import soundfile as sf
|
13 |
+
from scipy.io import wavfile
|
14 |
+
from datetime import datetime
|
15 |
+
from urllib.parse import urlparse
|
16 |
+
from mega import Mega
|
17 |
+
from flask import Flask, request, jsonify
|
18 |
+
app = Flask(__name__)
|
19 |
+
|
20 |
+
now_dir = os.getcwd()
|
21 |
+
tmp = os.path.join(now_dir, "TEMP")
|
22 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
23 |
+
os.makedirs(tmp, exist_ok=True)
|
24 |
+
os.environ["TEMP"] = tmp
|
25 |
+
from lib.infer_pack.models import (
|
26 |
+
SynthesizerTrnMs256NSFsid,
|
27 |
+
SynthesizerTrnMs256NSFsid_nono,
|
28 |
+
SynthesizerTrnMs768NSFsid,
|
29 |
+
SynthesizerTrnMs768NSFsid_nono,
|
30 |
+
)
|
31 |
+
from fairseq import checkpoint_utils
|
32 |
+
from vc_infer_pipeline import VC
|
33 |
+
from config import Config
|
34 |
+
config = Config()
|
35 |
+
|
36 |
+
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
37 |
+
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
|
38 |
+
|
39 |
+
hubert_model = None
|
40 |
+
|
41 |
+
f0method_mode = ["pm", "harvest", "crepe"]
|
42 |
+
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
|
43 |
+
|
44 |
+
if os.path.isfile("rmvpe.pt"):
|
45 |
+
f0method_mode.insert(2, "rmvpe")
|
46 |
+
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
|
47 |
+
|
48 |
+
def load_hubert():
|
49 |
+
global hubert_model
|
50 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
51 |
+
["hubert_base.pt"],
|
52 |
+
suffix="",
|
53 |
+
)
|
54 |
+
hubert_model = models[0]
|
55 |
+
hubert_model = hubert_model.to(config.device)
|
56 |
+
if config.is_half:
|
57 |
+
hubert_model = hubert_model.half()
|
58 |
+
else:
|
59 |
+
hubert_model = hubert_model.float()
|
60 |
+
hubert_model.eval()
|
61 |
+
|
62 |
+
load_hubert()
|
63 |
+
|
64 |
+
weight_root = "weights"
|
65 |
+
index_root = "weights/index"
|
66 |
+
weights_model = []
|
67 |
+
weights_index = []
|
68 |
+
for _, _, model_files in os.walk(weight_root):
|
69 |
+
for file in model_files:
|
70 |
+
if file.endswith(".pth"):
|
71 |
+
weights_model.append(file)
|
72 |
+
for _, _, index_files in os.walk(index_root):
|
73 |
+
for file in index_files:
|
74 |
+
if file.endswith('.index') and "trained" not in file:
|
75 |
+
weights_index.append(os.path.join(index_root, file))
|
76 |
+
|
77 |
+
def check_models():
|
78 |
+
weights_model = []
|
79 |
+
weights_index = []
|
80 |
+
for _, _, model_files in os.walk(weight_root):
|
81 |
+
for file in model_files:
|
82 |
+
if file.endswith(".pth"):
|
83 |
+
weights_model.append(file)
|
84 |
+
for _, _, index_files in os.walk(index_root):
|
85 |
+
for file in index_files:
|
86 |
+
if file.endswith('.index') and "trained" not in file:
|
87 |
+
weights_index.append(os.path.join(index_root, file))
|
88 |
+
return (
|
89 |
+
gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
|
90 |
+
gr.Dropdown.update(choices=sorted(weights_index))
|
91 |
+
)
|
92 |
+
|
93 |
+
def clean():
|
94 |
+
return (
|
95 |
+
gr.Dropdown.update(value=""),
|
96 |
+
gr.Slider.update(visible=False)
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
@app.route('/convert_voice', methods=['POST'])
|
103 |
+
def convert_voice(spk_id, input_audio_path, voice_transform):
|
104 |
+
|
105 |
+
output_audio_path = vc_single(
|
106 |
+
sid=spk_id,
|
107 |
+
input_audio_path=input_audio_path,
|
108 |
+
f0_up_key=voice_transform, # Assuming voice_transform corresponds to f0_up_key
|
109 |
+
f0_file=None if not f0_file else f0_file,
|
110 |
+
f0_method="rmvpe",
|
111 |
+
file_index=None, # Assuming file_index_path corresponds to file_index
|
112 |
+
index_rate=0.75,
|
113 |
+
filter_radius=3,
|
114 |
+
resample_sr=0,
|
115 |
+
rms_mix_rate=0.25,
|
116 |
+
protect=0.33 # Adjusted from protect_rate to protect to match the function signature
|
117 |
+
)
|
118 |
+
return output_audio_path
|
119 |
+
|
120 |
+
|
121 |
+
def vc_single(
|
122 |
+
sid,
|
123 |
+
input_audio_path,
|
124 |
+
f0_up_key,
|
125 |
+
f0_file,
|
126 |
+
f0_method,
|
127 |
+
file_index,
|
128 |
+
index_rate,
|
129 |
+
filter_radius,
|
130 |
+
resample_sr,
|
131 |
+
rms_mix_rate,
|
132 |
+
protect
|
133 |
+
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
134 |
+
global tgt_sr, net_g, vc, hubert_model, version, cpt
|
135 |
+
try:
|
136 |
+
logs = []
|
137 |
+
print(f"Converting...")
|
138 |
+
logs.append(f"Converting...")
|
139 |
+
yield "\n".join(logs), None
|
140 |
+
|
141 |
+
f0_up_key = int(f0_up_key)
|
142 |
+
times = [0, 0, 0]
|
143 |
+
if hubert_model == None:
|
144 |
+
load_hubert()
|
145 |
+
if_f0 = cpt.get("f0", 1)
|
146 |
+
audio_opt = vc.pipeline(
|
147 |
+
hubert_model,
|
148 |
+
net_g,
|
149 |
+
sid,
|
150 |
+
audio,
|
151 |
+
input_audio_path,
|
152 |
+
times,
|
153 |
+
f0_up_key,
|
154 |
+
f0_method,
|
155 |
+
file_index,
|
156 |
+
# file_big_npy,
|
157 |
+
index_rate,
|
158 |
+
if_f0,
|
159 |
+
filter_radius,
|
160 |
+
tgt_sr,
|
161 |
+
resample_sr,
|
162 |
+
rms_mix_rate,
|
163 |
+
version,
|
164 |
+
protect,
|
165 |
+
f0_file=f0_file
|
166 |
+
)
|
167 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
168 |
+
tgt_sr = resample_sr
|
169 |
+
index_info = (
|
170 |
+
"Using index:%s." % file_index
|
171 |
+
if os.path.exists(file_index)
|
172 |
+
else "Index not used."
|
173 |
+
)
|
174 |
+
output_file_path = os.path.join("output", f"converted_audio_{sid}.wav") # Adjust path as needed
|
175 |
+
os.makedirs(os.path.dirname(output_file_path), exist_ok=True) # Create the output directory if it doesn't exist
|
176 |
+
|
177 |
+
# Save the audio file using the target sampling rate
|
178 |
+
sf.write(output_file_path, audio_opt, tgt_sr)
|
179 |
+
|
180 |
+
# Return the path to the saved file along with any other information
|
181 |
+
|
182 |
+
return (
|
183 |
+
f"Success. Audio saved to {output_file_path}\n{index_info}\nTime:\nnpy: %.2fs, f0: %.2fs, infer: %.2fs."
|
184 |
+
% (*times,),
|
185 |
+
output_file_path,
|
186 |
+
)
|
187 |
+
except:
|
188 |
+
info = traceback.format_exc()
|
189 |
+
logger.warning(info)
|
190 |
+
return info, (None, None)
|
191 |
+
|
192 |
+
def get_vc(sid, to_return_protect0):
|
193 |
+
global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
|
194 |
+
if sid == "" or sid == []:
|
195 |
+
global hubert_model
|
196 |
+
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
197 |
+
print("clean_empty_cache")
|
198 |
+
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
199 |
+
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
200 |
+
if torch.cuda.is_available():
|
201 |
+
torch.cuda.empty_cache()
|
202 |
+
###楼下不这么折腾清理不干净
|
203 |
+
if_f0 = cpt.get("f0", 1)
|
204 |
+
version = cpt.get("version", "v1")
|
205 |
+
if version == "v1":
|
206 |
+
if if_f0 == 1:
|
207 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
208 |
+
*cpt["config"], is_half=config.is_half
|
209 |
+
)
|
210 |
+
else:
|
211 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
212 |
+
elif version == "v2":
|
213 |
+
if if_f0 == 1:
|
214 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
215 |
+
*cpt["config"], is_half=config.is_half
|
216 |
+
)
|
217 |
+
else:
|
218 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
219 |
+
del net_g, cpt
|
220 |
+
if torch.cuda.is_available():
|
221 |
+
torch.cuda.empty_cache()
|
222 |
+
cpt = None
|
223 |
+
return (
|
224 |
+
gr.Slider.update(maximum=2333, visible=False),
|
225 |
+
gr.Slider.update(visible=True),
|
226 |
+
gr.Dropdown.update(choices=sorted(weights_index), value=""),
|
227 |
+
gr.Markdown.update(value="# <center> No model selected")
|
228 |
+
)
|
229 |
+
print(f"Loading {sid} model...")
|
230 |
+
selected_model = sid[:-4]
|
231 |
+
cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu")
|
232 |
+
tgt_sr = cpt["config"][-1]
|
233 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
234 |
+
if_f0 = cpt.get("f0", 1)
|
235 |
+
if if_f0 == 0:
|
236 |
+
to_return_protect0 = {
|
237 |
+
"visible": False,
|
238 |
+
"value": 0.5,
|
239 |
+
"__type__": "update",
|
240 |
+
}
|
241 |
+
else:
|
242 |
+
to_return_protect0 = {
|
243 |
+
"visible": True,
|
244 |
+
"value": to_return_protect0,
|
245 |
+
"__type__": "update",
|
246 |
+
}
|
247 |
+
version = cpt.get("version", "v1")
|
248 |
+
if version == "v1":
|
249 |
+
if if_f0 == 1:
|
250 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
251 |
+
else:
|
252 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
253 |
+
elif version == "v2":
|
254 |
+
if if_f0 == 1:
|
255 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
256 |
+
else:
|
257 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
258 |
+
del net_g.enc_q
|
259 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
260 |
+
net_g.eval().to(config.device)
|
261 |
+
if config.is_half:
|
262 |
+
net_g = net_g.half()
|
263 |
+
else:
|
264 |
+
net_g = net_g.float()
|
265 |
+
vc = VC(tgt_sr, config)
|
266 |
+
n_spk = cpt["config"][-3]
|
267 |
+
weights_index = []
|
268 |
+
for _, _, index_files in os.walk(index_root):
|
269 |
+
for file in index_files:
|
270 |
+
if file.endswith('.index') and "trained" not in file:
|
271 |
+
weights_index.append(os.path.join(index_root, file))
|
272 |
+
if weights_index == []:
|
273 |
+
selected_index = gr.Dropdown.update(value="")
|
274 |
+
else:
|
275 |
+
selected_index = gr.Dropdown.update(value=weights_index[0])
|
276 |
+
for index, model_index in enumerate(weights_index):
|
277 |
+
if selected_model in model_index:
|
278 |
+
selected_index = gr.Dropdown.update(value=weights_index[index])
|
279 |
+
break
|
280 |
+
return (
|
281 |
+
gr.Slider.update(maximum=n_spk, visible=True),
|
282 |
+
to_return_protect0,
|
283 |
+
selected_index,
|
284 |
+
gr.Markdown.update(
|
285 |
+
f'## <center> {selected_model}\n'+
|
286 |
+
f'### <center> RVC {version} Model'
|
287 |
+
)
|
288 |
+
)
|
289 |
+
|
290 |
+
def find_audio_files(folder_path, extensions):
|
291 |
+
audio_files = []
|
292 |
+
for root, dirs, files in os.walk(folder_path):
|
293 |
+
for file in files:
|
294 |
+
if any(file.endswith(ext) for ext in extensions):
|
295 |
+
audio_files.append(file)
|
296 |
+
return audio_files
|
297 |
+
|
298 |
+
def vc_multi(
|
299 |
+
spk_item,
|
300 |
+
vc_input,
|
301 |
+
vc_output,
|
302 |
+
vc_transform0,
|
303 |
+
f0method0,
|
304 |
+
file_index,
|
305 |
+
index_rate,
|
306 |
+
filter_radius,
|
307 |
+
resample_sr,
|
308 |
+
rms_mix_rate,
|
309 |
+
protect,
|
310 |
+
):
|
311 |
+
global tgt_sr, net_g, vc, hubert_model, version, cpt
|
312 |
+
logs = []
|
313 |
+
logs.append("Converting...")
|
314 |
+
yield "\n".join(logs)
|
315 |
+
print()
|
316 |
+
try:
|
317 |
+
if os.path.exists(vc_input):
|
318 |
+
folder_path = vc_input
|
319 |
+
extensions = [".mp3", ".wav", ".flac", ".ogg"]
|
320 |
+
audio_files = find_audio_files(folder_path, extensions)
|
321 |
+
for index, file in enumerate(audio_files, start=1):
|
322 |
+
audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True)
|
323 |
+
input_audio_path = folder_path, file
|
324 |
+
f0_up_key = int(vc_transform0)
|
325 |
+
times = [0, 0, 0]
|
326 |
+
if hubert_model == None:
|
327 |
+
load_hubert()
|
328 |
+
if_f0 = cpt.get("f0", 1)
|
329 |
+
audio_opt = vc.pipeline(
|
330 |
+
hubert_model,
|
331 |
+
net_g,
|
332 |
+
spk_item,
|
333 |
+
audio,
|
334 |
+
input_audio_path,
|
335 |
+
times,
|
336 |
+
f0_up_key,
|
337 |
+
f0method0,
|
338 |
+
file_index,
|
339 |
+
index_rate,
|
340 |
+
if_f0,
|
341 |
+
filter_radius,
|
342 |
+
tgt_sr,
|
343 |
+
resample_sr,
|
344 |
+
rms_mix_rate,
|
345 |
+
version,
|
346 |
+
protect,
|
347 |
+
f0_file=None
|
348 |
+
)
|
349 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
350 |
+
tgt_sr = resample_sr
|
351 |
+
output_path = f"{os.path.join(vc_output, file)}"
|
352 |
+
os.makedirs(os.path.join(vc_output), exist_ok=True)
|
353 |
+
sf.write(
|
354 |
+
output_path,
|
355 |
+
audio_opt,
|
356 |
+
tgt_sr,
|
357 |
+
)
|
358 |
+
info = f"{index} / {len(audio_files)} | {file}"
|
359 |
+
print(info)
|
360 |
+
logs.append(info)
|
361 |
+
yield "\n".join(logs)
|
362 |
+
else:
|
363 |
+
logs.append("Folder not found or path doesn't exist.")
|
364 |
+
yield "\n".join(logs)
|
365 |
+
except:
|
366 |
+
info = traceback.format_exc()
|
367 |
+
print(info)
|
368 |
+
logs.append(info)
|
369 |
+
yield "\n".join(logs)
|
370 |
+
|
371 |
+
def download_audio(url, audio_provider):
|
372 |
+
logs = []
|
373 |
+
os.makedirs("dl_audio", exist_ok=True)
|
374 |
+
if url == "":
|
375 |
+
logs.append("URL required!")
|
376 |
+
yield None, "\n".join(logs)
|
377 |
+
return None, "\n".join(logs)
|
378 |
+
if audio_provider == "Youtube":
|
379 |
+
logs.append("Downloading the audio...")
|
380 |
+
yield None, "\n".join(logs)
|
381 |
+
ydl_opts = {
|
382 |
+
'noplaylist': True,
|
383 |
+
'format': 'bestaudio/best',
|
384 |
+
'postprocessors': [{
|
385 |
+
'key': 'FFmpegExtractAudio',
|
386 |
+
'preferredcodec': 'wav',
|
387 |
+
}],
|
388 |
+
"outtmpl": 'result/dl_audio/audio',
|
389 |
+
}
|
390 |
+
audio_path = "result/dl_audio/audio.wav"
|
391 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
392 |
+
ydl.download([url])
|
393 |
+
logs.append("Download Complete.")
|
394 |
+
yield audio_path, "\n".join(logs)
|
395 |
+
|
396 |
+
def cut_vocal_and_inst_yt(split_model):
|
397 |
+
logs = []
|
398 |
+
logs.append("Starting the audio splitting process...")
|
399 |
+
yield "\n".join(logs), None, None, None
|
400 |
+
command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output"
|
401 |
+
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
|
402 |
+
for line in result.stdout:
|
403 |
+
logs.append(line)
|
404 |
+
yield "\n".join(logs), None, None, None
|
405 |
+
print(result.stdout)
|
406 |
+
vocal = f"output/{split_model}/audio/vocals.wav"
|
407 |
+
inst = f"output/{split_model}/audio/no_vocals.wav"
|
408 |
+
logs.append("Audio splitting complete.")
|
409 |
+
yield "\n".join(logs), vocal, inst, vocal
|
410 |
+
|
411 |
+
def cut_vocal_and_inst(split_model, audio_data):
|
412 |
+
logs = []
|
413 |
+
vocal_path = "output/result/audio.wav"
|
414 |
+
os.makedirs("output/result", exist_ok=True)
|
415 |
+
wavfile.write(vocal_path, audio_data[0], audio_data[1])
|
416 |
+
logs.append("Starting the audio splitting process...")
|
417 |
+
yield "\n".join(logs), None, None
|
418 |
+
command = f"demucs --two-stems=vocals -n {split_model} {vocal_path} -o output"
|
419 |
+
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
|
420 |
+
for line in result.stdout:
|
421 |
+
logs.append(line)
|
422 |
+
yield "\n".join(logs), None, None
|
423 |
+
print(result.stdout)
|
424 |
+
vocal = f"output/{split_model}/audio/vocals.wav"
|
425 |
+
inst = f"output/{split_model}/audio/no_vocals.wav"
|
426 |
+
logs.append("Audio splitting complete.")
|
427 |
+
yield "\n".join(logs), vocal, inst
|
428 |
+
|
429 |
+
def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume, split_model):
|
430 |
+
os.makedirs("output/result", exist_ok=True)
|
431 |
+
vocal_path = "output/result/output.wav"
|
432 |
+
output_path = "output/result/combine.mp3"
|
433 |
+
inst_path = f"output/{split_model}/audio/no_vocals.wav"
|
434 |
+
wavfile.write(vocal_path, audio_data[0], audio_data[1])
|
435 |
+
command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
|
436 |
+
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
437 |
+
print(result.stdout.decode())
|
438 |
+
return output_path
|
439 |
+
|
440 |
+
def download_and_extract_models(urls):
|
441 |
+
logs = []
|
442 |
+
os.makedirs("zips", exist_ok=True)
|
443 |
+
os.makedirs(os.path.join("zips", "extract"), exist_ok=True)
|
444 |
+
os.makedirs(os.path.join(weight_root), exist_ok=True)
|
445 |
+
os.makedirs(os.path.join(index_root), exist_ok=True)
|
446 |
+
for link in urls.splitlines():
|
447 |
+
url = link.strip()
|
448 |
+
if not url:
|
449 |
+
raise gr.Error("URL Required!")
|
450 |
+
return "No URLs provided."
|
451 |
+
model_zip = urlparse(url).path.split('/')[-2] + '.zip'
|
452 |
+
model_zip_path = os.path.join('zips', model_zip)
|
453 |
+
logs.append(f"Downloading...")
|
454 |
+
yield "\n".join(logs)
|
455 |
+
if "drive.google.com" in url:
|
456 |
+
gdown.download(url, os.path.join("zips", "extract"), quiet=False)
|
457 |
+
elif "mega.nz" in url:
|
458 |
+
m = Mega()
|
459 |
+
m.download_url(url, 'zips')
|
460 |
+
else:
|
461 |
+
os.system(f"wget {url} -O {model_zip_path}")
|
462 |
+
logs.append(f"Extracting...")
|
463 |
+
yield "\n".join(logs)
|
464 |
+
for filename in os.listdir("zips"):
|
465 |
+
archived_file = os.path.join("zips", filename)
|
466 |
+
if filename.endswith(".zip"):
|
467 |
+
shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip')
|
468 |
+
elif filename.endswith(".rar"):
|
469 |
+
with rarfile.RarFile(archived_file, 'r') as rar:
|
470 |
+
rar.extractall(os.path.join("zips", "extract"))
|
471 |
+
for _, dirs, files in os.walk(os.path.join("zips", "extract")):
|
472 |
+
logs.append(f"Searching Model and Index...")
|
473 |
+
yield "\n".join(logs)
|
474 |
+
model = False
|
475 |
+
index = False
|
476 |
+
if files:
|
477 |
+
for file in files:
|
478 |
+
if file.endswith(".pth"):
|
479 |
+
basename = file[:-4]
|
480 |
+
shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file))
|
481 |
+
model = True
|
482 |
+
if file.endswith('.index') and "trained" not in file:
|
483 |
+
shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file))
|
484 |
+
index = True
|
485 |
+
else:
|
486 |
+
logs.append("No model in main folder.")
|
487 |
+
yield "\n".join(logs)
|
488 |
+
logs.append("Searching in subfolders...")
|
489 |
+
yield "\n".join(logs)
|
490 |
+
for sub_dir in dirs:
|
491 |
+
for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)):
|
492 |
+
for file in sub_files:
|
493 |
+
if file.endswith(".pth"):
|
494 |
+
basename = file[:-4]
|
495 |
+
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file))
|
496 |
+
model = True
|
497 |
+
if file.endswith('.index') and "trained" not in file:
|
498 |
+
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file))
|
499 |
+
index = True
|
500 |
+
shutil.rmtree(os.path.join("zips", "extract", sub_dir))
|
501 |
+
if index is False:
|
502 |
+
logs.append("Model only file, no Index file detected.")
|
503 |
+
yield "\n".join(logs)
|
504 |
+
logs.append("Download Completed!")
|
505 |
+
yield "\n".join(logs)
|
506 |
+
logs.append("Successfully download all models! Refresh your model list to load the model")
|
507 |
+
yield "\n".join(logs)
|