File size: 2,030 Bytes
664416c
1620bef
664416c
 
 
 
e26fb5f
664416c
465d7de
664416c
 
1e23a8b
 
 
 
 
 
 
 
 
 
 
 
 
 
664416c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
title: 3D-POPE Leaderboard
emoji: 🥇
colorFrom: green
colorTo: indigo
sdk: gradio
sdk_version: 4.4.0
app_file: app.py
pinned: false
license: apache-2.0
---
This is a public leaderboard of the 3D-POPE benchmark for evaluating hallucinations in 3D-LLMs. The benchmark was introduced in: ["3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination"](https://arxiv.org/abs/2406.05132)

```
@misc{yang20243dgrand,
    title={3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination},
    author={Jianing Yang and Xuweiyi Chen and Nikhil Madaan and Madhavan Iyengar and Shengyi Qian and David F. Fouhey and Joyce Chai},
    year={2024},
    eprint={2406.05132},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```



# Start the configuration

Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).

Results files should have the following format and be stored as json files:
```json
{
    "config": {
        "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
        "model_name": "path of the model on the hub: org/model",
        "model_sha": "revision on the hub",
    },
    "results": {
        "task_name": {
            "metric_name": score,
        },
        "task_name2": {
            "metric_name": score,
        }
    }
}
```

Request files are created automatically by this tool.

If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.

# Code logic for more complex edits

You'll find 
- the main table' columns names and properties in `src/display/utils.py`
- the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
- teh logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`