File size: 5,348 Bytes
75df68a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d87080c
75df68a
 
 
d87080c
75df68a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d87080c
75df68a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

import time
import warnings

from functools import partial
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt

from sklearn import cluster, datasets
from sklearn.preprocessing import StandardScaler
from itertools import cycle, islice



def train_models(selected_data, n_samples, n_clusters, n_neighbors, cls_name):
    np.random.seed(0)
    default_base = {"n_neighbors": 10, "n_clusters": 3}
    noisy_circles = datasets.make_circles(n_samples=n_samples, factor=0.5, noise=0.05)
    noisy_moons = datasets.make_moons(n_samples=n_samples, noise=0.05)
    blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
    no_structure = np.random.rand(n_samples, 2), None

    # Anisotropicly distributed data
    random_state = 170
    X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)
    transformation = [[0.6, -0.6], [-0.4, 0.8]]
    X_aniso = np.dot(X, transformation)
    aniso = (X_aniso, y)

    # blobs with varied variances
    varied = datasets.make_blobs(
        n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state
    )
    
    dataset_list = {
        "Noisy Circles": [noisy_circles, {"n_clusters": n_clusters}],
        "Noisy Moons": [noisy_moons, {"n_clusters": n_clusters}],
        "Varied": [varied, {"n_neighbors": n_neighbors}],
        "Aniso": [aniso, {"n_neighbors": n_neighbors}],
        "Blobs": [blobs, {}],
        "No Structure": [no_structure, {}],
    }
    
    params = default_base.copy()
    params.update(dataset_list[selected_data][1])

    X, y = dataset_list[selected_data][0]

    X = StandardScaler().fit_transform(X)

    ward = cluster.AgglomerativeClustering(
        n_clusters=params["n_clusters"], linkage="ward"
    )
    complete = cluster.AgglomerativeClustering(
        n_clusters=params["n_clusters"], linkage="complete"
    )
    average = cluster.AgglomerativeClustering(
        n_clusters=params["n_clusters"], linkage="average"
    )
    single = cluster.AgglomerativeClustering(
        n_clusters=params["n_clusters"], linkage="single"
    )

    clustering_algorithms = {
        "Single Linkage": single,
        "Average Linkage": average,
        "Complete Linkage": complete,
        "Ward Linkage": ward,
    }
    
    t0 = time.time()
    algorithm = clustering_algorithms[cls_name]
    # catch warnings related to kneighbors_graph
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore",
            message="the number of connected components of the "
            + "connectivity matrix is [0-9]{1,2}"
            + " > 1. Completing it to avoid stopping the tree early.",
            category=UserWarning,
        )
        algorithm.fit(X)

    t1 = time.time()
    if hasattr(algorithm, "labels_"):
        y_pred = algorithm.labels_.astype(int)
    else:
        y_pred = algorithm.predict(X)

    fig, ax = plt.subplots()

    colors = np.array(
        list(
            islice(
                cycle(
                    [
                        "#377eb8",
                        "#ff7f00",
                        "#4daf4a",
                        "#f781bf",
                        "#a65628",
                        "#984ea3",
                        "#999999",
                        "#e41a1c",
                        "#dede00",
                    ]
                ),
                int(max(y_pred) + 1),
            )
        )
    )
    ax.scatter(X[:, 0], X[:, 1], color=colors[y_pred])

    ax.set_xlim(-2.5, 2.5)
    ax.set_ylim(-2.5, 2.5)
    ax.set_xticks(())
    ax.set_yticks(())

    return fig


def iter_grid(n_rows, n_cols):
    # create a grid using gradio Block
    for _ in range(n_rows):
        with gr.Row():
            for _ in range(n_cols):
                with gr.Column():
                    yield

title = "πŸ§‘πŸ»β€πŸ”¬ Compare linkages in hierarchical clustering πŸ§‘πŸ»β€πŸ”¬"
with gr.Blocks(title=title) as demo:
    gr.Markdown(f"## {title}")
    gr.Markdown("This app demonstrates different linkage methods in"
    " hierarchical clustering πŸ”—")


    input_models = ["Single Linkage", "Average Linkage", "Complete Linkage",
    "Ward Linkage"]
    input_data = gr.Radio(
        choices=["Noisy Circles", "Noisy Moons", 
        "Varied", "Aniso", "Blobs", "No Structure"],
        value="Noisy Moons"
    )
    n_samples = gr.Slider(minimum=500, maximum=2000, step=50, 
    label = "Number of Samples")
    
    n_neighbors = gr.Slider(minimum=2, maximum=5, step=1, 
    label = "Number of neighbors")
    n_clusters = gr.Slider(minimum=2, maximum=5, step=1, 
    label = "Number of Clusters")
    counter = 0

    for _ in iter_grid(2, 2):
        if counter >= len(input_models):
            break

        input_model = input_models[counter]
        plot = gr.Plot(label=input_model)
        fn = partial(train_models, cls_name=input_model)
        input_data.change(fn=fn, inputs=[input_data, n_samples, n_clusters, n_neighbors], outputs=plot)
        n_samples.change(fn=fn, inputs=[input_data, n_samples, n_clusters, n_neighbors], outputs=plot)
        
        n_neighbors.change(fn=fn, inputs=[input_data, n_samples, n_clusters, n_neighbors], outputs=plot)
        n_clusters.change(fn=fn, inputs=[input_data, n_samples, n_clusters, n_neighbors], outputs=plot)
        counter += 1


demo.launch()