Commit
·
75df68a
1
Parent(s):
4bfd1a6
initial commit
Browse files- app.py +169 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import time
|
| 3 |
+
import warnings
|
| 4 |
+
|
| 5 |
+
from functools import partial
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
|
| 10 |
+
from sklearn import cluster, datasets
|
| 11 |
+
from sklearn.preprocessing import StandardScaler
|
| 12 |
+
from itertools import cycle, islice
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def train_models(selected_data, n_samples, n_clusters, n_neighbors, cls_name):
|
| 17 |
+
np.random.seed(0)
|
| 18 |
+
default_base = {"n_neighbors": 10, "n_clusters": 3}
|
| 19 |
+
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=0.5, noise=0.05)
|
| 20 |
+
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=0.05)
|
| 21 |
+
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
|
| 22 |
+
no_structure = np.random.rand(n_samples, 2), None
|
| 23 |
+
|
| 24 |
+
# Anisotropicly distributed data
|
| 25 |
+
random_state = 170
|
| 26 |
+
X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)
|
| 27 |
+
transformation = [[0.6, -0.6], [-0.4, 0.8]]
|
| 28 |
+
X_aniso = np.dot(X, transformation)
|
| 29 |
+
aniso = (X_aniso, y)
|
| 30 |
+
|
| 31 |
+
# blobs with varied variances
|
| 32 |
+
varied = datasets.make_blobs(
|
| 33 |
+
n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
dataset_list = {
|
| 37 |
+
"Noisy Circles": [noisy_circles, {"n_clusters": n_clusters}],
|
| 38 |
+
"Noisy Moons": [noisy_moons, {"n_clusters": n_clusters}],
|
| 39 |
+
"Varied": [varied, {"n_neighbors": n_neighbors}],
|
| 40 |
+
"Aniso": [aniso, {"n_neighbors": n_neighbors}],
|
| 41 |
+
"Blobs": [blobs, {}],
|
| 42 |
+
"No Structure": [no_structure, {}],
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
params = default_base.copy()
|
| 46 |
+
params.update(dataset_list[selected_data][1])
|
| 47 |
+
|
| 48 |
+
X, y = dataset_list[selected_data][0]
|
| 49 |
+
|
| 50 |
+
X = StandardScaler().fit_transform(X)
|
| 51 |
+
|
| 52 |
+
ward = cluster.AgglomerativeClustering(
|
| 53 |
+
n_clusters=params["n_clusters"], linkage="ward"
|
| 54 |
+
)
|
| 55 |
+
complete = cluster.AgglomerativeClustering(
|
| 56 |
+
n_clusters=params["n_clusters"], linkage="complete"
|
| 57 |
+
)
|
| 58 |
+
average = cluster.AgglomerativeClustering(
|
| 59 |
+
n_clusters=params["n_clusters"], linkage="average"
|
| 60 |
+
)
|
| 61 |
+
single = cluster.AgglomerativeClustering(
|
| 62 |
+
n_clusters=params["n_clusters"], linkage="single"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
clustering_algorithms = {
|
| 66 |
+
"Single Linkage": single,
|
| 67 |
+
"Average Linkage": average,
|
| 68 |
+
"Complete Linkage": complete,
|
| 69 |
+
"Ward Linkage": ward,
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
t0 = time.time()
|
| 73 |
+
algorithm = clustering_algorithms[cls_name]
|
| 74 |
+
# catch warnings related to kneighbors_graph
|
| 75 |
+
with warnings.catch_warnings():
|
| 76 |
+
warnings.filterwarnings(
|
| 77 |
+
"ignore",
|
| 78 |
+
message="the number of connected components of the "
|
| 79 |
+
+ "connectivity matrix is [0-9]{1,2}"
|
| 80 |
+
+ " > 1. Completing it to avoid stopping the tree early.",
|
| 81 |
+
category=UserWarning,
|
| 82 |
+
)
|
| 83 |
+
algorithm.fit(X)
|
| 84 |
+
|
| 85 |
+
t1 = time.time()
|
| 86 |
+
if hasattr(algorithm, "labels_"):
|
| 87 |
+
y_pred = algorithm.labels_.astype(int)
|
| 88 |
+
else:
|
| 89 |
+
y_pred = algorithm.predict(X)
|
| 90 |
+
|
| 91 |
+
fig, ax = plt.subplots()
|
| 92 |
+
|
| 93 |
+
colors = np.array(
|
| 94 |
+
list(
|
| 95 |
+
islice(
|
| 96 |
+
cycle(
|
| 97 |
+
[
|
| 98 |
+
"#377eb8",
|
| 99 |
+
"#ff7f00",
|
| 100 |
+
"#4daf4a",
|
| 101 |
+
"#f781bf",
|
| 102 |
+
"#a65628",
|
| 103 |
+
"#984ea3",
|
| 104 |
+
"#999999",
|
| 105 |
+
"#e41a1c",
|
| 106 |
+
"#dede00",
|
| 107 |
+
]
|
| 108 |
+
),
|
| 109 |
+
int(max(y_pred) + 1),
|
| 110 |
+
)
|
| 111 |
+
)
|
| 112 |
+
)
|
| 113 |
+
ax.scatter(X[:, 0], X[:, 1], color=colors[y_pred])
|
| 114 |
+
|
| 115 |
+
ax.set_xlim(-2.5, 2.5)
|
| 116 |
+
ax.set_ylim(-2.5, 2.5)
|
| 117 |
+
ax.set_xticks(())
|
| 118 |
+
ax.set_yticks(())
|
| 119 |
+
|
| 120 |
+
return fig
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def iter_grid(n_rows, n_cols):
|
| 124 |
+
# create a grid using gradio Block
|
| 125 |
+
for _ in range(n_rows):
|
| 126 |
+
with gr.Row():
|
| 127 |
+
for _ in range(n_cols):
|
| 128 |
+
with gr.Column():
|
| 129 |
+
yield
|
| 130 |
+
|
| 131 |
+
title = "Compare linkages in hierarchical clustering"
|
| 132 |
+
with gr.Blocks(title=title) as demo:
|
| 133 |
+
gr.Markdown(f"## {title}")
|
| 134 |
+
gr.Markdown("This app demonstrates different linkage methods in"
|
| 135 |
+
" hierarchical clustering")
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
input_models = ["Single Linkage", "Average Linkage", "Complete Linkage",
|
| 139 |
+
"Ward Linkage"]
|
| 140 |
+
input_data = gr.Radio(
|
| 141 |
+
choices=["Noisy Circles", "Noisy Moons",
|
| 142 |
+
"Varied", "Aniso", "Blobs", "No Structure"],
|
| 143 |
+
value="Noisy Moons"
|
| 144 |
+
)
|
| 145 |
+
n_samples = gr.Slider(minimum=500, maximum=2000, step=50,
|
| 146 |
+
label = "Number of Samples")
|
| 147 |
+
|
| 148 |
+
n_neighbors = gr.Slider(minimum=2, maximum=5, step=1,
|
| 149 |
+
label = "Number of neighbors")
|
| 150 |
+
n_clusters = gr.Slider(minimum=2, maximum=5, step=1,
|
| 151 |
+
label = "Number of Clusters")
|
| 152 |
+
counter = 0
|
| 153 |
+
|
| 154 |
+
for _ in iter_grid(2, 5):
|
| 155 |
+
if counter >= len(input_models):
|
| 156 |
+
break
|
| 157 |
+
|
| 158 |
+
input_model = input_models[counter]
|
| 159 |
+
plot = gr.Plot(label=input_model)
|
| 160 |
+
fn = partial(train_models, cls_name=input_model)
|
| 161 |
+
input_data.change(fn=fn, inputs=[input_data, n_samples, n_clusters, n_neighbors], outputs=plot)
|
| 162 |
+
n_samples.change(fn=fn, inputs=[input_data, n_samples, n_clusters, n_neighbors], outputs=plot)
|
| 163 |
+
|
| 164 |
+
n_neighbors.change(fn=fn, inputs=[input_data, n_samples, n_clusters, n_neighbors], outputs=plot)
|
| 165 |
+
n_clusters.change(fn=fn, inputs=[input_data, n_samples, n_clusters, n_neighbors], outputs=plot)
|
| 166 |
+
counter += 1
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn
|
| 2 |
+
matplotlib
|