File size: 4,321 Bytes
13993ca
 
 
 
 
 
 
 
 
 
47ff4e9
13993ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ff4e9
 
 
 
 
 
 
13993ca
47ff4e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13993ca
 
 
47ff4e9
 
13993ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import sys
from dataclasses import dataclass

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.linear_model import LinearRegression,Ridge,Lasso
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,AdaBoostRegressor
from xgboost import XGBRegressor
from sklearn.neighbors import KNeighborsRegressor
from catboost import CatBoostRegressor



from src.exception import CustomException
from src.logger import logging

from src.utils import save_object,evaluate_models

@dataclass
class ModelTrainerConfig:
    trained_model_file_path = os.path.join('artifacts','model.pkl')

class ModelTrainer:
    def __init__(self) -> None:
        self.model_trainer_config = ModelTrainerConfig()

    def initiate_model_trainer(self,train_array, test_array):
        try:
            logging.info('spliting training and test input data')

            X_train, y_train, X_test, y_test= (
                train_array[:,:-1],
                train_array[:,-1],
                test_array[:,:-1],
                test_array[:,-1]

                )
            models = {
                "Random Forest": RandomForestRegressor(),
                "Decision Tree": DecisionTreeRegressor(),
                "Gradient Boosting": GradientBoostingRegressor(),
                "Linear Regression": LinearRegression(),
                "XGBRegressor": XGBRegressor(),
                "CatBoosting Regressor": CatBoostRegressor(verbose=False),
                "AdaBoost Regressor": AdaBoostRegressor(),
            }
            params={
                "Decision Tree": {
                    'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],
                    # 'splitter':['best','random'],
                    # 'max_features':['sqrt','log2'],
                },
                "Random Forest":{
                    # 'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],
                 
                    # 'max_features':['sqrt','log2',None],
                    'n_estimators': [8,16,32,64,128,256]
                },
                "Gradient Boosting":{
                    # 'loss':['squared_error', 'huber', 'absolute_error', 'quantile'],
                    'learning_rate':[.1,.01,.05,.001],
                    'subsample':[0.6,0.7,0.75,0.8,0.85,0.9],
                    # 'criterion':['squared_error', 'friedman_mse'],
                    # 'max_features':['auto','sqrt','log2'],
                    'n_estimators': [8,16,32,64,128,256]
                },
                "Linear Regression":{},
                "XGBRegressor":{
                    'learning_rate':[.1,.01,.05,.001],
                    'n_estimators': [8,16,32,64,128,256]
                },
                "CatBoosting Regressor":{
                    'depth': [6,8,10],
                    'learning_rate': [0.01, 0.05, 0.1],
                    'iterations': [30, 50, 100]
                },
                "AdaBoost Regressor":{
                    'learning_rate':[.1,.01,0.5,.001],
                    # 'loss':['linear','square','exponential'],
                    'n_estimators': [8,16,32,64,128,256]
                }
                
            }


            logging.info('training models')

            model_report:dict=evaluate_models(X_train=X_train,y_train=y_train,X_test=X_test,y_test=y_test,
                                              models=models,params=params)

            logging.info("model trained") 

            best_model_score = max(sorted(model_report.values()))

            best_model_name = list(model_report.keys())[
                list(model_report.values()).index(best_model_score)
            ]

            best_model = models[best_model_name]

            if best_model_score < 0.6:
                raise CustomException("NO best model found")
            
            logging.info("best model found")

            save_object(
                file_path=self.model_trainer_config.trained_model_file_path,
                obj=best_model
            )

            predicted = best_model.predict(X_test)

            r2 = r2_score(y_test,predicted)

            return r2

        except Exception as e:
            raise CustomException(e,sys)