Spaces:
Sleeping
Sleeping
Commit
·
47ff4e9
1
Parent(s):
13993ca
hyperparameter tunning
Browse files- artifacts/model.pkl +0 -0
- catboost_info/catboost_training.json +104 -0
- catboost_info/learn/events.out.tfevents +0 -0
- catboost_info/learn_error.tsv +101 -0
- catboost_info/time_left.tsv +101 -0
- logs/09_11_2023_02_15_59.log/09_11_2023_02_15_59.log +12 -0
- logs/09_11_2023_02_21_08.log/09_11_2023_02_21_08.log +11 -0
- logs/09_11_2023_02_21_31.log/09_11_2023_02_21_31.log +21 -0
- src/__pycache__/utils.cpython-310.pyc +0 -0
- src/components/__pycache__/model_trainer.cpython-310.pyc +0 -0
- src/components/model_trainer.py +48 -9
- src/utils.py +8 -2
artifacts/model.pkl
CHANGED
Binary files a/artifacts/model.pkl and b/artifacts/model.pkl differ
|
|
catboost_info/catboost_training.json
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":100,"learn_sets":["learn"],"name":"experiment"},
|
3 |
+
"iterations":[
|
4 |
+
{"learn":[14.00604436],"iteration":0,"passed_time":0.0002028695953,"remaining_time":0.02008408994},
|
5 |
+
{"learn":[13.12698134],"iteration":1,"passed_time":0.0003596987506,"remaining_time":0.01762523878},
|
6 |
+
{"learn":[12.37186208],"iteration":2,"passed_time":0.0005119863601,"remaining_time":0.01655422564},
|
7 |
+
{"learn":[11.665363],"iteration":3,"passed_time":0.0007538132509,"remaining_time":0.01809151802},
|
8 |
+
{"learn":[11.05444387],"iteration":4,"passed_time":0.00100297328,"remaining_time":0.01905649231},
|
9 |
+
{"learn":[10.45095647],"iteration":5,"passed_time":0.00120955111,"remaining_time":0.01894963405},
|
10 |
+
{"learn":[9.915582367],"iteration":6,"passed_time":0.001368546874,"remaining_time":0.01818212275},
|
11 |
+
{"learn":[9.482436681],"iteration":7,"passed_time":0.001527750966,"remaining_time":0.01756913611},
|
12 |
+
{"learn":[9.090892244],"iteration":8,"passed_time":0.001741203612,"remaining_time":0.01760550319},
|
13 |
+
{"learn":[8.69298109],"iteration":9,"passed_time":0.001935781762,"remaining_time":0.01742203586},
|
14 |
+
{"learn":[8.352355202],"iteration":10,"passed_time":0.002154692597,"remaining_time":0.01743342192},
|
15 |
+
{"learn":[8.003478295],"iteration":11,"passed_time":0.002331562885,"remaining_time":0.01709812782},
|
16 |
+
{"learn":[7.715093865],"iteration":12,"passed_time":0.00252393276,"remaining_time":0.01689093462},
|
17 |
+
{"learn":[7.450065772],"iteration":13,"passed_time":0.002729843941,"remaining_time":0.01676904135},
|
18 |
+
{"learn":[7.245233637],"iteration":14,"passed_time":0.00291954722,"remaining_time":0.01654410091},
|
19 |
+
{"learn":[7.021163498],"iteration":15,"passed_time":0.003110167142,"remaining_time":0.01632837749},
|
20 |
+
{"learn":[6.837450967],"iteration":16,"passed_time":0.003276454378,"remaining_time":0.01599680667},
|
21 |
+
{"learn":[6.650674807],"iteration":17,"passed_time":0.003441866638,"remaining_time":0.01567961469},
|
22 |
+
{"learn":[6.50886205],"iteration":18,"passed_time":0.003620611876,"remaining_time":0.0154352401},
|
23 |
+
{"learn":[6.384306751],"iteration":19,"passed_time":0.003782774223,"remaining_time":0.01513109689},
|
24 |
+
{"learn":[6.257546477],"iteration":20,"passed_time":0.003950478088,"remaining_time":0.01486132233},
|
25 |
+
{"learn":[6.157585537],"iteration":21,"passed_time":0.004118265285,"remaining_time":0.01460112237},
|
26 |
+
{"learn":[6.051733046],"iteration":22,"passed_time":0.004294093934,"remaining_time":0.01437587969},
|
27 |
+
{"learn":[5.965692608],"iteration":23,"passed_time":0.004474714122,"remaining_time":0.01416992805},
|
28 |
+
{"learn":[5.896777013],"iteration":24,"passed_time":0.004636501479,"remaining_time":0.01390950444},
|
29 |
+
{"learn":[5.840547761],"iteration":25,"passed_time":0.004743373631,"remaining_time":0.0135003711},
|
30 |
+
{"learn":[5.786362809],"iteration":26,"passed_time":0.0049147024,"remaining_time":0.01328789908},
|
31 |
+
{"learn":[5.73650182],"iteration":27,"passed_time":0.005080406319,"remaining_time":0.01306390196},
|
32 |
+
{"learn":[5.681991275],"iteration":28,"passed_time":0.005259859872,"remaining_time":0.01287758796},
|
33 |
+
{"learn":[5.648424119],"iteration":29,"passed_time":0.005434396888,"remaining_time":0.01268025941},
|
34 |
+
{"learn":[5.589414397],"iteration":30,"passed_time":0.005605267336,"remaining_time":0.0124762402},
|
35 |
+
{"learn":[5.537117648],"iteration":31,"passed_time":0.005758471588,"remaining_time":0.01223675212},
|
36 |
+
{"learn":[5.498571395],"iteration":32,"passed_time":0.005936008525,"remaining_time":0.0120518961},
|
37 |
+
{"learn":[5.459070646],"iteration":33,"passed_time":0.006104670698,"remaining_time":0.01185024312},
|
38 |
+
{"learn":[5.431116716],"iteration":34,"passed_time":0.006273916189,"remaining_time":0.01165155864},
|
39 |
+
{"learn":[5.399485836],"iteration":35,"passed_time":0.006437703493,"remaining_time":0.01144480621},
|
40 |
+
{"learn":[5.362093839],"iteration":36,"passed_time":0.006613573807,"remaining_time":0.01126095},
|
41 |
+
{"learn":[5.333990985],"iteration":37,"passed_time":0.00677473618,"remaining_time":0.01105351693},
|
42 |
+
{"learn":[5.300876404],"iteration":38,"passed_time":0.006999771852,"remaining_time":0.0109483611},
|
43 |
+
{"learn":[5.270036214],"iteration":39,"passed_time":0.007192225058,"remaining_time":0.01078833759},
|
44 |
+
{"learn":[5.248647238],"iteration":40,"passed_time":0.007383053307,"remaining_time":0.01062439378},
|
45 |
+
{"learn":[5.22820615],"iteration":41,"passed_time":0.007553798759,"remaining_time":0.01043143638},
|
46 |
+
{"learn":[5.210448476],"iteration":42,"passed_time":0.007743960359,"remaining_time":0.01026524978},
|
47 |
+
{"learn":[5.193989917],"iteration":43,"passed_time":0.00792812212,"remaining_time":0.01009033724},
|
48 |
+
{"learn":[5.176791737],"iteration":44,"passed_time":0.008099950875,"remaining_time":0.009899939959},
|
49 |
+
{"learn":[5.152880939],"iteration":45,"passed_time":0.008342611077,"remaining_time":0.00979349996},
|
50 |
+
{"learn":[5.140671238],"iteration":46,"passed_time":0.008525564536,"remaining_time":0.009613934477},
|
51 |
+
{"learn":[5.126465369],"iteration":47,"passed_time":0.008697726616,"remaining_time":0.009422537168},
|
52 |
+
{"learn":[5.10911134],"iteration":48,"passed_time":0.008885721608,"remaining_time":0.009248404123},
|
53 |
+
{"learn":[5.088353714],"iteration":49,"passed_time":0.00906105027,"remaining_time":0.00906105027},
|
54 |
+
{"learn":[5.074056238],"iteration":50,"passed_time":0.009246753656,"remaining_time":0.008884135866},
|
55 |
+
{"learn":[5.062702142],"iteration":51,"passed_time":0.009425457229,"remaining_time":0.008700422057},
|
56 |
+
{"learn":[5.053127017],"iteration":52,"passed_time":0.009625535232,"remaining_time":0.008535851998},
|
57 |
+
{"learn":[5.039419419],"iteration":53,"passed_time":0.009795489037,"remaining_time":0.008344305476},
|
58 |
+
{"learn":[5.030316216],"iteration":54,"passed_time":0.009983984016,"remaining_time":0.008168714195},
|
59 |
+
{"learn":[5.017565811],"iteration":55,"passed_time":0.01016239593,"remaining_time":0.007984739659},
|
60 |
+
{"learn":[5.007781319],"iteration":56,"passed_time":0.01032372496,"remaining_time":0.007788073219},
|
61 |
+
{"learn":[4.990798087],"iteration":57,"passed_time":0.01050492847,"remaining_time":0.007607017168},
|
62 |
+
{"learn":[4.981864012],"iteration":58,"passed_time":0.01068892357,"remaining_time":0.007427896039},
|
63 |
+
{"learn":[4.976315113],"iteration":59,"passed_time":0.0108680438,"remaining_time":0.007245362531},
|
64 |
+
{"learn":[4.971564958],"iteration":60,"passed_time":0.01104099752,"remaining_time":0.007058998416},
|
65 |
+
{"learn":[4.95372513],"iteration":61,"passed_time":0.01121495122,"remaining_time":0.006873679781},
|
66 |
+
{"learn":[4.945549188],"iteration":62,"passed_time":0.01138473836,"remaining_time":0.006686274913},
|
67 |
+
{"learn":[4.942963326],"iteration":63,"passed_time":0.01149427711,"remaining_time":0.006465530876},
|
68 |
+
{"learn":[4.927468079],"iteration":64,"passed_time":0.01168652199,"remaining_time":0.006292742611},
|
69 |
+
{"learn":[4.908092459],"iteration":65,"passed_time":0.01186835048,"remaining_time":0.006113998733},
|
70 |
+
{"learn":[4.896406235],"iteration":66,"passed_time":0.01207234505,"remaining_time":0.005946080396},
|
71 |
+
{"learn":[4.888847345],"iteration":67,"passed_time":0.01224217386,"remaining_time":0.005761022991},
|
72 |
+
{"learn":[4.875550319],"iteration":68,"passed_time":0.01242541897,"remaining_time":0.005582434611},
|
73 |
+
{"learn":[4.864397465],"iteration":69,"passed_time":0.01261666388,"remaining_time":0.005407141662},
|
74 |
+
{"learn":[4.85373976],"iteration":70,"passed_time":0.01281595024,"remaining_time":0.005234683899},
|
75 |
+
{"learn":[4.841999397],"iteration":71,"passed_time":0.01296802952,"remaining_time":0.00504312259},
|
76 |
+
{"learn":[4.833691207],"iteration":72,"passed_time":0.01315110797,"remaining_time":0.004864108429},
|
77 |
+
{"learn":[4.828250069],"iteration":73,"passed_time":0.01332302006,"remaining_time":0.004681061102},
|
78 |
+
{"learn":[4.820643993],"iteration":74,"passed_time":0.0134977654,"remaining_time":0.004499255135},
|
79 |
+
{"learn":[4.803197127],"iteration":75,"passed_time":0.01366263601,"remaining_time":0.004314516636},
|
80 |
+
{"learn":[4.794640663],"iteration":76,"passed_time":0.01382729829,"remaining_time":0.004130231957},
|
81 |
+
{"learn":[4.784619761],"iteration":77,"passed_time":0.01399279388,"remaining_time":0.003946685454},
|
82 |
+
{"learn":[4.773434388],"iteration":78,"passed_time":0.01416595594,"remaining_time":0.003765633857},
|
83 |
+
{"learn":[4.765035668],"iteration":79,"passed_time":0.01432811828,"remaining_time":0.003582029571},
|
84 |
+
{"learn":[4.757496576],"iteration":80,"passed_time":0.01449436385,"remaining_time":0.003399912509},
|
85 |
+
{"learn":[4.75057963],"iteration":81,"passed_time":0.01466531763,"remaining_time":0.003219216066},
|
86 |
+
{"learn":[4.743949895],"iteration":82,"passed_time":0.01483214652,"remaining_time":0.003037909529},
|
87 |
+
{"learn":[4.73274802],"iteration":83,"passed_time":0.01499405888,"remaining_time":0.002856011214},
|
88 |
+
{"learn":[4.730664054],"iteration":84,"passed_time":0.01517147082,"remaining_time":0.002677318379},
|
89 |
+
{"learn":[4.725370322],"iteration":85,"passed_time":0.01535554924,"remaining_time":0.002499740575},
|
90 |
+
{"learn":[4.715790252],"iteration":86,"passed_time":0.01552962794,"remaining_time":0.002320519118},
|
91 |
+
{"learn":[4.711837163],"iteration":87,"passed_time":0.01569233194,"remaining_time":0.002139863446},
|
92 |
+
{"learn":[4.69682414],"iteration":88,"passed_time":0.01586420236,"remaining_time":0.001960744112},
|
93 |
+
{"learn":[4.690188634],"iteration":89,"passed_time":0.01605069739,"remaining_time":0.001783410821},
|
94 |
+
{"learn":[4.676238219],"iteration":90,"passed_time":0.01627406644,"remaining_time":0.001609523055},
|
95 |
+
{"learn":[4.669275258],"iteration":91,"passed_time":0.01645760322,"remaining_time":0.001431095932},
|
96 |
+
{"learn":[4.665157052],"iteration":92,"passed_time":0.01665113973,"remaining_time":0.001253311592},
|
97 |
+
{"learn":[4.656406023],"iteration":93,"passed_time":0.01682063521,"remaining_time":0.001073657567},
|
98 |
+
{"learn":[4.644990816],"iteration":94,"passed_time":0.01700079708,"remaining_time":0.0008947787937},
|
99 |
+
{"learn":[4.642251832],"iteration":95,"passed_time":0.0172015834,"remaining_time":0.0007167326416},
|
100 |
+
{"learn":[4.635783448],"iteration":96,"passed_time":0.01739499491,"remaining_time":0.0005379895334},
|
101 |
+
{"learn":[4.625846219],"iteration":97,"passed_time":0.01756599036,"remaining_time":0.0003584895991},
|
102 |
+
{"learn":[4.617010653],"iteration":98,"passed_time":0.01773761078,"remaining_time":0.0001791677857},
|
103 |
+
{"learn":[4.607315629],"iteration":99,"passed_time":0.01792293918,"remaining_time":0}
|
104 |
+
]}
|
catboost_info/learn/events.out.tfevents
ADDED
Binary file (4.8 kB). View file
|
|
catboost_info/learn_error.tsv
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
iter RMSE
|
2 |
+
0 14.00604436
|
3 |
+
1 13.12698134
|
4 |
+
2 12.37186208
|
5 |
+
3 11.665363
|
6 |
+
4 11.05444387
|
7 |
+
5 10.45095647
|
8 |
+
6 9.915582367
|
9 |
+
7 9.482436681
|
10 |
+
8 9.090892244
|
11 |
+
9 8.69298109
|
12 |
+
10 8.352355202
|
13 |
+
11 8.003478295
|
14 |
+
12 7.715093865
|
15 |
+
13 7.450065772
|
16 |
+
14 7.245233637
|
17 |
+
15 7.021163498
|
18 |
+
16 6.837450967
|
19 |
+
17 6.650674807
|
20 |
+
18 6.50886205
|
21 |
+
19 6.384306751
|
22 |
+
20 6.257546477
|
23 |
+
21 6.157585537
|
24 |
+
22 6.051733046
|
25 |
+
23 5.965692608
|
26 |
+
24 5.896777013
|
27 |
+
25 5.840547761
|
28 |
+
26 5.786362809
|
29 |
+
27 5.73650182
|
30 |
+
28 5.681991275
|
31 |
+
29 5.648424119
|
32 |
+
30 5.589414397
|
33 |
+
31 5.537117648
|
34 |
+
32 5.498571395
|
35 |
+
33 5.459070646
|
36 |
+
34 5.431116716
|
37 |
+
35 5.399485836
|
38 |
+
36 5.362093839
|
39 |
+
37 5.333990985
|
40 |
+
38 5.300876404
|
41 |
+
39 5.270036214
|
42 |
+
40 5.248647238
|
43 |
+
41 5.22820615
|
44 |
+
42 5.210448476
|
45 |
+
43 5.193989917
|
46 |
+
44 5.176791737
|
47 |
+
45 5.152880939
|
48 |
+
46 5.140671238
|
49 |
+
47 5.126465369
|
50 |
+
48 5.10911134
|
51 |
+
49 5.088353714
|
52 |
+
50 5.074056238
|
53 |
+
51 5.062702142
|
54 |
+
52 5.053127017
|
55 |
+
53 5.039419419
|
56 |
+
54 5.030316216
|
57 |
+
55 5.017565811
|
58 |
+
56 5.007781319
|
59 |
+
57 4.990798087
|
60 |
+
58 4.981864012
|
61 |
+
59 4.976315113
|
62 |
+
60 4.971564958
|
63 |
+
61 4.95372513
|
64 |
+
62 4.945549188
|
65 |
+
63 4.942963326
|
66 |
+
64 4.927468079
|
67 |
+
65 4.908092459
|
68 |
+
66 4.896406235
|
69 |
+
67 4.888847345
|
70 |
+
68 4.875550319
|
71 |
+
69 4.864397465
|
72 |
+
70 4.85373976
|
73 |
+
71 4.841999397
|
74 |
+
72 4.833691207
|
75 |
+
73 4.828250069
|
76 |
+
74 4.820643993
|
77 |
+
75 4.803197127
|
78 |
+
76 4.794640663
|
79 |
+
77 4.784619761
|
80 |
+
78 4.773434388
|
81 |
+
79 4.765035668
|
82 |
+
80 4.757496576
|
83 |
+
81 4.75057963
|
84 |
+
82 4.743949895
|
85 |
+
83 4.73274802
|
86 |
+
84 4.730664054
|
87 |
+
85 4.725370322
|
88 |
+
86 4.715790252
|
89 |
+
87 4.711837163
|
90 |
+
88 4.69682414
|
91 |
+
89 4.690188634
|
92 |
+
90 4.676238219
|
93 |
+
91 4.669275258
|
94 |
+
92 4.665157052
|
95 |
+
93 4.656406023
|
96 |
+
94 4.644990816
|
97 |
+
95 4.642251832
|
98 |
+
96 4.635783448
|
99 |
+
97 4.625846219
|
100 |
+
98 4.617010653
|
101 |
+
99 4.607315629
|
catboost_info/time_left.tsv
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
iter Passed Remaining
|
2 |
+
0 0 20
|
3 |
+
1 0 17
|
4 |
+
2 0 16
|
5 |
+
3 0 18
|
6 |
+
4 1 19
|
7 |
+
5 1 18
|
8 |
+
6 1 18
|
9 |
+
7 1 17
|
10 |
+
8 1 17
|
11 |
+
9 1 17
|
12 |
+
10 2 17
|
13 |
+
11 2 17
|
14 |
+
12 2 16
|
15 |
+
13 2 16
|
16 |
+
14 2 16
|
17 |
+
15 3 16
|
18 |
+
16 3 15
|
19 |
+
17 3 15
|
20 |
+
18 3 15
|
21 |
+
19 3 15
|
22 |
+
20 3 14
|
23 |
+
21 4 14
|
24 |
+
22 4 14
|
25 |
+
23 4 14
|
26 |
+
24 4 13
|
27 |
+
25 4 13
|
28 |
+
26 4 13
|
29 |
+
27 5 13
|
30 |
+
28 5 12
|
31 |
+
29 5 12
|
32 |
+
30 5 12
|
33 |
+
31 5 12
|
34 |
+
32 5 12
|
35 |
+
33 6 11
|
36 |
+
34 6 11
|
37 |
+
35 6 11
|
38 |
+
36 6 11
|
39 |
+
37 6 11
|
40 |
+
38 6 10
|
41 |
+
39 7 10
|
42 |
+
40 7 10
|
43 |
+
41 7 10
|
44 |
+
42 7 10
|
45 |
+
43 7 10
|
46 |
+
44 8 9
|
47 |
+
45 8 9
|
48 |
+
46 8 9
|
49 |
+
47 8 9
|
50 |
+
48 8 9
|
51 |
+
49 9 9
|
52 |
+
50 9 8
|
53 |
+
51 9 8
|
54 |
+
52 9 8
|
55 |
+
53 9 8
|
56 |
+
54 9 8
|
57 |
+
55 10 7
|
58 |
+
56 10 7
|
59 |
+
57 10 7
|
60 |
+
58 10 7
|
61 |
+
59 10 7
|
62 |
+
60 11 7
|
63 |
+
61 11 6
|
64 |
+
62 11 6
|
65 |
+
63 11 6
|
66 |
+
64 11 6
|
67 |
+
65 11 6
|
68 |
+
66 12 5
|
69 |
+
67 12 5
|
70 |
+
68 12 5
|
71 |
+
69 12 5
|
72 |
+
70 12 5
|
73 |
+
71 12 5
|
74 |
+
72 13 4
|
75 |
+
73 13 4
|
76 |
+
74 13 4
|
77 |
+
75 13 4
|
78 |
+
76 13 4
|
79 |
+
77 13 3
|
80 |
+
78 14 3
|
81 |
+
79 14 3
|
82 |
+
80 14 3
|
83 |
+
81 14 3
|
84 |
+
82 14 3
|
85 |
+
83 14 2
|
86 |
+
84 15 2
|
87 |
+
85 15 2
|
88 |
+
86 15 2
|
89 |
+
87 15 2
|
90 |
+
88 15 1
|
91 |
+
89 16 1
|
92 |
+
90 16 1
|
93 |
+
91 16 1
|
94 |
+
92 16 1
|
95 |
+
93 16 1
|
96 |
+
94 17 0
|
97 |
+
95 17 0
|
98 |
+
96 17 0
|
99 |
+
97 17 0
|
100 |
+
98 17 0
|
101 |
+
99 17 0
|
logs/09_11_2023_02_15_59.log/09_11_2023_02_15_59.log
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ 2023-09-11 02:16:03,696 ] 26 root - INFO - Entered the data ingestion method or component
|
2 |
+
[ 2023-09-11 02:16:03,702 ] 29 root - INFO - read the dataset as dataframe
|
3 |
+
[ 2023-09-11 02:16:03,705 ] 38 root - INFO - Train test split initiated
|
4 |
+
[ 2023-09-11 02:16:03,710 ] 45 root - INFO - ingestion of data completed
|
5 |
+
[ 2023-09-11 02:16:03,712 ] 68 root - INFO - read train and test data completed
|
6 |
+
[ 2023-09-11 02:16:03,712 ] 70 root - INFO - obtaining preprocessing object
|
7 |
+
[ 2023-09-11 02:16:03,712 ] 44 root - INFO - numerical columns: ['writing_score', 'reading_score']
|
8 |
+
[ 2023-09-11 02:16:03,712 ] 51 root - INFO - categorical columns: ['gender', 'race_ethnicity', 'parental_level_of_education', 'lunch', 'test_preparation_course']
|
9 |
+
[ 2023-09-11 02:16:03,713 ] 81 root - INFO - applying preprocessing object on training and testing dataframe
|
10 |
+
[ 2023-09-11 02:16:03,724 ] 100 root - INFO - saved preprocessing object.
|
11 |
+
[ 2023-09-11 02:16:03,724 ] 29 root - INFO - spliting training and test input data
|
12 |
+
[ 2023-09-11 02:16:03,724 ] 49 root - INFO - training models
|
logs/09_11_2023_02_21_08.log/09_11_2023_02_21_08.log
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ 2023-09-11 02:21:09,550 ] 26 root - INFO - Entered the data ingestion method or component
|
2 |
+
[ 2023-09-11 02:21:09,553 ] 29 root - INFO - read the dataset as dataframe
|
3 |
+
[ 2023-09-11 02:21:09,555 ] 38 root - INFO - Train test split initiated
|
4 |
+
[ 2023-09-11 02:21:09,559 ] 45 root - INFO - ingestion of data completed
|
5 |
+
[ 2023-09-11 02:21:09,561 ] 68 root - INFO - read train and test data completed
|
6 |
+
[ 2023-09-11 02:21:09,561 ] 70 root - INFO - obtaining preprocessing object
|
7 |
+
[ 2023-09-11 02:21:09,561 ] 44 root - INFO - numerical columns: ['writing_score', 'reading_score']
|
8 |
+
[ 2023-09-11 02:21:09,561 ] 51 root - INFO - categorical columns: ['gender', 'race_ethnicity', 'parental_level_of_education', 'lunch', 'test_preparation_course']
|
9 |
+
[ 2023-09-11 02:21:09,561 ] 81 root - INFO - applying preprocessing object on training and testing dataframe
|
10 |
+
[ 2023-09-11 02:21:09,569 ] 100 root - INFO - saved preprocessing object.
|
11 |
+
[ 2023-09-11 02:21:09,569 ] 29 root - INFO - spliting training and test input data
|
logs/09_11_2023_02_21_31.log/09_11_2023_02_21_31.log
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ 2023-09-11 02:21:32,314 ] 26 root - INFO - Entered the data ingestion method or component
|
2 |
+
[ 2023-09-11 02:21:32,317 ] 29 root - INFO - read the dataset as dataframe
|
3 |
+
[ 2023-09-11 02:21:32,319 ] 38 root - INFO - Train test split initiated
|
4 |
+
[ 2023-09-11 02:21:32,323 ] 45 root - INFO - ingestion of data completed
|
5 |
+
[ 2023-09-11 02:21:32,324 ] 68 root - INFO - read train and test data completed
|
6 |
+
[ 2023-09-11 02:21:32,324 ] 70 root - INFO - obtaining preprocessing object
|
7 |
+
[ 2023-09-11 02:21:32,324 ] 44 root - INFO - numerical columns: ['writing_score', 'reading_score']
|
8 |
+
[ 2023-09-11 02:21:32,324 ] 51 root - INFO - categorical columns: ['gender', 'race_ethnicity', 'parental_level_of_education', 'lunch', 'test_preparation_course']
|
9 |
+
[ 2023-09-11 02:21:32,325 ] 81 root - INFO - applying preprocessing object on training and testing dataframe
|
10 |
+
[ 2023-09-11 02:21:32,332 ] 100 root - INFO - saved preprocessing object.
|
11 |
+
[ 2023-09-11 02:21:32,332 ] 30 root - INFO - spliting training and test input data
|
12 |
+
[ 2023-09-11 02:21:32,333 ] 87 root - INFO - training models
|
13 |
+
[ 2023-09-11 02:21:32,333 ] 33 root - INFO - training started
|
14 |
+
[ 2023-09-11 02:21:35,327 ] 33 root - INFO - training started
|
15 |
+
[ 2023-09-11 02:21:35,455 ] 33 root - INFO - training started
|
16 |
+
[ 2023-09-11 02:21:57,385 ] 33 root - INFO - training started
|
17 |
+
[ 2023-09-11 02:21:57,453 ] 33 root - INFO - training started
|
18 |
+
[ 2023-09-11 02:22:02,593 ] 33 root - INFO - training started
|
19 |
+
[ 2023-09-11 02:22:06,525 ] 33 root - INFO - training started
|
20 |
+
[ 2023-09-11 02:22:13,794 ] 92 root - INFO - model trained
|
21 |
+
[ 2023-09-11 02:22:13,794 ] 105 root - INFO - best model found
|
src/__pycache__/utils.cpython-310.pyc
CHANGED
Binary files a/src/__pycache__/utils.cpython-310.pyc and b/src/__pycache__/utils.cpython-310.pyc differ
|
|
src/components/__pycache__/model_trainer.cpython-310.pyc
CHANGED
Binary files a/src/components/__pycache__/model_trainer.cpython-310.pyc and b/src/components/__pycache__/model_trainer.cpython-310.pyc differ
|
|
src/components/model_trainer.py
CHANGED
@@ -8,6 +8,7 @@ from sklearn.tree import DecisionTreeRegressor
|
|
8 |
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,AdaBoostRegressor
|
9 |
from xgboost import XGBRegressor
|
10 |
from sklearn.neighbors import KNeighborsRegressor
|
|
|
11 |
|
12 |
|
13 |
|
@@ -36,19 +37,57 @@ class ModelTrainer:
|
|
36 |
|
37 |
)
|
38 |
models = {
|
39 |
-
"
|
40 |
-
"
|
41 |
-
"
|
42 |
-
"
|
43 |
-
"
|
44 |
-
"
|
45 |
-
"
|
46 |
-
# "CatBoostRegressor":CatBoostRegressor(verbose=False),
|
47 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
logging.info('training models')
|
50 |
|
51 |
-
model_report:dict=evaluate_models(X_train=X_train,y_train=y_train,X_test=X_test,y_test=y_test,
|
|
|
52 |
|
53 |
logging.info("model trained")
|
54 |
|
|
|
8 |
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,AdaBoostRegressor
|
9 |
from xgboost import XGBRegressor
|
10 |
from sklearn.neighbors import KNeighborsRegressor
|
11 |
+
from catboost import CatBoostRegressor
|
12 |
|
13 |
|
14 |
|
|
|
37 |
|
38 |
)
|
39 |
models = {
|
40 |
+
"Random Forest": RandomForestRegressor(),
|
41 |
+
"Decision Tree": DecisionTreeRegressor(),
|
42 |
+
"Gradient Boosting": GradientBoostingRegressor(),
|
43 |
+
"Linear Regression": LinearRegression(),
|
44 |
+
"XGBRegressor": XGBRegressor(),
|
45 |
+
"CatBoosting Regressor": CatBoostRegressor(verbose=False),
|
46 |
+
"AdaBoost Regressor": AdaBoostRegressor(),
|
|
|
47 |
}
|
48 |
+
params={
|
49 |
+
"Decision Tree": {
|
50 |
+
'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],
|
51 |
+
# 'splitter':['best','random'],
|
52 |
+
# 'max_features':['sqrt','log2'],
|
53 |
+
},
|
54 |
+
"Random Forest":{
|
55 |
+
# 'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],
|
56 |
+
|
57 |
+
# 'max_features':['sqrt','log2',None],
|
58 |
+
'n_estimators': [8,16,32,64,128,256]
|
59 |
+
},
|
60 |
+
"Gradient Boosting":{
|
61 |
+
# 'loss':['squared_error', 'huber', 'absolute_error', 'quantile'],
|
62 |
+
'learning_rate':[.1,.01,.05,.001],
|
63 |
+
'subsample':[0.6,0.7,0.75,0.8,0.85,0.9],
|
64 |
+
# 'criterion':['squared_error', 'friedman_mse'],
|
65 |
+
# 'max_features':['auto','sqrt','log2'],
|
66 |
+
'n_estimators': [8,16,32,64,128,256]
|
67 |
+
},
|
68 |
+
"Linear Regression":{},
|
69 |
+
"XGBRegressor":{
|
70 |
+
'learning_rate':[.1,.01,.05,.001],
|
71 |
+
'n_estimators': [8,16,32,64,128,256]
|
72 |
+
},
|
73 |
+
"CatBoosting Regressor":{
|
74 |
+
'depth': [6,8,10],
|
75 |
+
'learning_rate': [0.01, 0.05, 0.1],
|
76 |
+
'iterations': [30, 50, 100]
|
77 |
+
},
|
78 |
+
"AdaBoost Regressor":{
|
79 |
+
'learning_rate':[.1,.01,0.5,.001],
|
80 |
+
# 'loss':['linear','square','exponential'],
|
81 |
+
'n_estimators': [8,16,32,64,128,256]
|
82 |
+
}
|
83 |
+
|
84 |
+
}
|
85 |
+
|
86 |
|
87 |
logging.info('training models')
|
88 |
|
89 |
+
model_report:dict=evaluate_models(X_train=X_train,y_train=y_train,X_test=X_test,y_test=y_test,
|
90 |
+
models=models,params=params)
|
91 |
|
92 |
logging.info("model trained")
|
93 |
|
src/utils.py
CHANGED
@@ -7,7 +7,7 @@ import pandas as pd
|
|
7 |
import pickle
|
8 |
|
9 |
from sklearn.metrics import r2_score
|
10 |
-
|
11 |
|
12 |
from src.logger import logging
|
13 |
from src.exception import CustomException
|
@@ -22,14 +22,20 @@ def save_object(file_path, obj):
|
|
22 |
except Exception as e:
|
23 |
raise CustomException(e,sys)
|
24 |
|
25 |
-
def evaluate_models(X_train, y_train, X_test, y_test, models):
|
26 |
try:
|
27 |
report = {}
|
28 |
|
29 |
for i in range(len(list(models))):
|
30 |
model = list(models.values())[i]
|
|
|
31 |
|
32 |
logging.info('training started')
|
|
|
|
|
|
|
|
|
|
|
33 |
model.fit(X_train,y_train)
|
34 |
|
35 |
y_train_pred = model.predict(X_train)
|
|
|
7 |
import pickle
|
8 |
|
9 |
from sklearn.metrics import r2_score
|
10 |
+
from sklearn.model_selection import GridSearchCV
|
11 |
|
12 |
from src.logger import logging
|
13 |
from src.exception import CustomException
|
|
|
22 |
except Exception as e:
|
23 |
raise CustomException(e,sys)
|
24 |
|
25 |
+
def evaluate_models(X_train, y_train, X_test, y_test, models,params):
|
26 |
try:
|
27 |
report = {}
|
28 |
|
29 |
for i in range(len(list(models))):
|
30 |
model = list(models.values())[i]
|
31 |
+
param = params[list(models.keys())[i]]
|
32 |
|
33 |
logging.info('training started')
|
34 |
+
|
35 |
+
gs = GridSearchCV(model,param_grid=param,cv=5,verbose=False)
|
36 |
+
gs.fit(X_train,y_train)
|
37 |
+
|
38 |
+
model.set_params(**gs.best_params_)
|
39 |
model.fit(X_train,y_train)
|
40 |
|
41 |
y_train_pred = model.predict(X_train)
|