Spaces:
Sleeping
Sleeping
File size: 1,633 Bytes
bf0670d 13993ca bf0670d 13993ca 47ff4e9 bf0670d 13993ca bf0670d 13993ca 47ff4e9 13993ca 47ff4e9 13993ca 47ff4e9 13993ca d7e1d8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import os
import sys
import numpy as np
import pandas as pd
import pickle
from sklearn.metrics import r2_score
from sklearn.model_selection import GridSearchCV
from src.logger import logging
from src.exception import CustomException
def save_object(file_path, obj):
try:
dir_path = os.path.dirname(file_path)
os.makedirs(dir_path,exist_ok=True)
with open(file_path, 'wb') as file_obj:
pickle.dump(obj,file_obj)
except Exception as e:
raise CustomException(e,sys)
def evaluate_models(X_train, y_train, X_test, y_test, models,params):
try:
report = {}
for i in range(len(list(models))):
model = list(models.values())[i]
param = params[list(models.keys())[i]]
logging.info('training started')
gs = GridSearchCV(model,param_grid=param,cv=5,verbose=False)
gs.fit(X_train,y_train)
model.set_params(**gs.best_params_)
model.fit(X_train,y_train)
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
train_model_score = r2_score(y_train, y_train_pred)
test_model_score = r2_score(y_test,y_test_pred)
report[list(models.keys())[i]] = test_model_score
return report
except Exception as e:
raise ConnectionAbortedError(e,sys)
def load_object(file_path):
try:
with open(file_path,'rb') as file_obj:
return pickle.load(file_obj)
except Exception as e:
raise CustomException(e, sys) |