Update pages/Life Cycle Of Machine Learning.py

#1
pages/Life Cycle Of Machine Learning.py CHANGED
@@ -1,45 +1,66 @@
1
  import streamlit as st
2
- import numpy as np
3
- import pandas as pd
4
 
5
  st.header(":red[**Life Cycle Of Machine Learning Project**]")
6
- st.write(":blue[Click the button below to explore detailed steps involved in an ML project:]")
7
 
 
8
  if st.button("**Problem Statement**"):
9
- if st.link_button("**Problem statement of Machine Learning**","https://huggingface.co/spaces/shwetashweta05/Zero_to_Hero_Machine_Learning/edit/main/pages/Life%20Cycle%20Of%20Machine%20Learning.py"):
10
- st.write("""
11
- *A problem statement in machine learning defines the specific issue you want to solve using data and machine learning techniques. It should clearly explain:**
12
- - What the problem is
13
- - Why solving it is important
14
- - What data is available
15
- - What the expected outcome will look like
16
- """)
17
- st.write("""
18
- **Examples of ML Problem Statements:**
19
- - **Predicting House Prices:**
20
- - Problem: We want to predict the price of houses based on features like size, location, number of bedrooms, etc.
21
- - Why: This helps buyers make informed decisions and real estate agents price houses correctly.
22
- - Data: Historical data about house prices and their features.
23
- - Expected Outcome: A model that predicts the price of a house given its features.
24
  """)
25
-
 
 
26
  if st.button("**Data Collection**"):
27
- if st.link_button("**About Data Collection of Machine Learning**","https://huggingface.co/spaces/shwetashweta05/Zero_to_Hero_Machine_Learning/edit/main/pages/Life%20Cycle%20Of%20Machine%20Learning.py"):
28
- st.write("About the data")
29
-
30
- #if st.button("**Simple EDA**"):
31
-
32
- #if st.button("**Data Pre-processing**"):
33
-
34
- #if st.button("**Exploratory Data Analysis (EDA)**"):
35
-
36
- #if st.button("**Feature Engineering**"):
37
-
38
- #if st.button("**Training**"):
39
-
40
- #if st.button("**Testing**"):
41
-
42
- #if st.button("**Deployment**"):
43
-
44
- #if st.button("**Monitoring**"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
 
1
  import streamlit as st
 
 
2
 
3
  st.header(":red[**Life Cycle Of Machine Learning Project**]")
4
+ st.write(":blue[Click the buttons below to explore detailed steps involved in an ML project:]")
5
 
6
+ # Problem Statement Section
7
  if st.button("**Problem Statement**"):
8
+ st.write("""
9
+ **A problem statement in machine learning defines the specific issue you want to solve using data and machine learning techniques.**
10
+
11
+ **Key Elements of a Problem Statement:**
12
+ - What the problem is
13
+ - Why solving it is important
14
+ - What data is available
15
+ - What the expected outcome will look like
16
+
17
+ **Example - Predicting House Prices:**
18
+ - **Problem:** Predict house prices based on size, location, number of bedrooms, etc.
19
+ - **Why:** Helps buyers and real estate agents make informed decisions.
20
+ - **Data:** Historical data on house prices and features.
21
+ - **Expected Outcome:** A predictive model for house prices.
 
22
  """)
23
+ st.markdown("[Learn more about Problem Statements](https://huggingface.co/spaces/shwetashweta05/Zero_to_Hero_Machine_Learning)")
24
+
25
+ # Data Collection Section
26
  if st.button("**Data Collection**"):
27
+ st.write("""
28
+ **Data collection involves gathering relevant data to solve your ML problem.**
29
+ - Identify the source of data (e.g., sensors, databases, web scraping).
30
+ - Ensure data quality and relevance.
31
+ - Examples include datasets for image classification, sales prediction, etc.
32
+ """)
33
+ st.markdown("[Learn more about Data Collection](https://huggingface.co/spaces/shwetashweta05/Zero_to_Hero_Machine_Learning)")
34
+
35
+ # Simple EDA Section
36
+ if st.button("**Simple EDA**"):
37
+ st.write("**Exploring data for initial insights and understanding.**")
38
+
39
+ # Data Preprocessing Section
40
+ if st.button("**Data Pre-processing**"):
41
+ st.write("**Cleaning and preparing data for analysis.**")
42
+
43
+ # Exploratory Data Analysis Section
44
+ if st.button("**Exploratory Data Analysis (EDA)**"):
45
+ st.write("**In-depth data analysis to discover patterns and relationships.**")
46
+
47
+ # Feature Engineering Section
48
+ if st.button("**Feature Engineering**"):
49
+ st.write("**Creating or transforming features to improve model performance.**")
50
+
51
+ # Training Section
52
+ if st.button("**Training**"):
53
+ st.write("**Building and training machine learning models.**")
54
+
55
+ # Testing Section
56
+ if st.button("**Testing**"):
57
+ st.write("**Evaluating model performance on test data.**")
58
+
59
+ # Deployment Section
60
+ if st.button("**Deployment**"):
61
+ st.write("**Deploying the model for real-world use.**")
62
+
63
+ # Monitoring Section
64
+ if st.button("**Monitoring**"):
65
+ st.write("**Continuously tracking model performance and making improvements.**")
66