Update pages/Life Cycle Of Machine Learning.py
#1
by
shwetashweta05
- opened
pages/Life Cycle Of Machine Learning.py
CHANGED
@@ -1,45 +1,66 @@
|
|
1 |
import streamlit as st
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
|
5 |
st.header(":red[**Life Cycle Of Machine Learning Project**]")
|
6 |
-
st.write(":blue[Click the
|
7 |
|
|
|
8 |
if st.button("**Problem Statement**"):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
- Expected Outcome: A model that predicts the price of a house given its features.
|
24 |
""")
|
25 |
-
|
|
|
|
|
26 |
if st.button("**Data Collection**"):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
|
3 |
st.header(":red[**Life Cycle Of Machine Learning Project**]")
|
4 |
+
st.write(":blue[Click the buttons below to explore detailed steps involved in an ML project:]")
|
5 |
|
6 |
+
# Problem Statement Section
|
7 |
if st.button("**Problem Statement**"):
|
8 |
+
st.write("""
|
9 |
+
**A problem statement in machine learning defines the specific issue you want to solve using data and machine learning techniques.**
|
10 |
+
|
11 |
+
**Key Elements of a Problem Statement:**
|
12 |
+
- What the problem is
|
13 |
+
- Why solving it is important
|
14 |
+
- What data is available
|
15 |
+
- What the expected outcome will look like
|
16 |
+
|
17 |
+
**Example - Predicting House Prices:**
|
18 |
+
- **Problem:** Predict house prices based on size, location, number of bedrooms, etc.
|
19 |
+
- **Why:** Helps buyers and real estate agents make informed decisions.
|
20 |
+
- **Data:** Historical data on house prices and features.
|
21 |
+
- **Expected Outcome:** A predictive model for house prices.
|
|
|
22 |
""")
|
23 |
+
st.markdown("[Learn more about Problem Statements](https://huggingface.co/spaces/shwetashweta05/Zero_to_Hero_Machine_Learning)")
|
24 |
+
|
25 |
+
# Data Collection Section
|
26 |
if st.button("**Data Collection**"):
|
27 |
+
st.write("""
|
28 |
+
**Data collection involves gathering relevant data to solve your ML problem.**
|
29 |
+
- Identify the source of data (e.g., sensors, databases, web scraping).
|
30 |
+
- Ensure data quality and relevance.
|
31 |
+
- Examples include datasets for image classification, sales prediction, etc.
|
32 |
+
""")
|
33 |
+
st.markdown("[Learn more about Data Collection](https://huggingface.co/spaces/shwetashweta05/Zero_to_Hero_Machine_Learning)")
|
34 |
+
|
35 |
+
# Simple EDA Section
|
36 |
+
if st.button("**Simple EDA**"):
|
37 |
+
st.write("**Exploring data for initial insights and understanding.**")
|
38 |
+
|
39 |
+
# Data Preprocessing Section
|
40 |
+
if st.button("**Data Pre-processing**"):
|
41 |
+
st.write("**Cleaning and preparing data for analysis.**")
|
42 |
+
|
43 |
+
# Exploratory Data Analysis Section
|
44 |
+
if st.button("**Exploratory Data Analysis (EDA)**"):
|
45 |
+
st.write("**In-depth data analysis to discover patterns and relationships.**")
|
46 |
+
|
47 |
+
# Feature Engineering Section
|
48 |
+
if st.button("**Feature Engineering**"):
|
49 |
+
st.write("**Creating or transforming features to improve model performance.**")
|
50 |
+
|
51 |
+
# Training Section
|
52 |
+
if st.button("**Training**"):
|
53 |
+
st.write("**Building and training machine learning models.**")
|
54 |
+
|
55 |
+
# Testing Section
|
56 |
+
if st.button("**Testing**"):
|
57 |
+
st.write("**Evaluating model performance on test data.**")
|
58 |
+
|
59 |
+
# Deployment Section
|
60 |
+
if st.button("**Deployment**"):
|
61 |
+
st.write("**Deploying the model for real-world use.**")
|
62 |
+
|
63 |
+
# Monitoring Section
|
64 |
+
if st.button("**Monitoring**"):
|
65 |
+
st.write("**Continuously tracking model performance and making improvements.**")
|
66 |
|