Spaces:
Sleeping
Sleeping
File size: 15,828 Bytes
50af927 378ea6c 93f03df 50af927 378ea6c c36db17 378ea6c 50af927 378ea6c 50af927 378ea6c 50af927 378ea6c c36db17 378ea6c 29cea1c 378ea6c 50af927 378ea6c 50af927 c36db17 5029883 50af927 c36db17 93f03df 6aa4b02 93f03df 6aa4b02 93f03df c36db17 93f03df 6aa4b02 93f03df c36db17 93f03df c36db17 378ea6c 6aa4b02 50af927 378ea6c 6aa4b02 50af927 c36db17 378ea6c 93f03df 378ea6c c36db17 378ea6c 50af927 378ea6c c36db17 93f03df c36db17 6aa4b02 93f03df 6aa4b02 93f03df c36db17 378ea6c 6aa4b02 378ea6c 50af927 378ea6c 6aa4b02 378ea6c 6aa4b02 50af927 ddae684 6aa4b02 ddae684 5e27a0e 6aa4b02 93f03df 6b6d6f7 93f03df 6b6d6f7 93f03df c36db17 93f03df c36db17 93f03df ddae684 6aa4b02 93f03df ddae684 93f03df c36db17 93f03df 6aa4b02 93f03df ddae684 6aa4b02 93f03df ddae684 93f03df c36db17 93f03df c36db17 ddae684 93f03df 6aa4b02 c36db17 6aa4b02 93f03df 6b6d6f7 93f03df ddae684 6b6d6f7 93f03df c36db17 fa4be47 378ea6c 845f4fe 378ea6c c36db17 50168da 93f03df c36db17 6aa4b02 5eb0488 93f03df c36db17 93f03df c36db17 93f03df 2777751 378ea6c 93f03df 50168da 93f03df 6aa4b02 93f03df 378ea6c 93f03df c36db17 93f03df 6aa4b02 c1c8f91 5e27a0e 6aa4b02 5e27a0e 6aa4b02 93f03df 6aa4b02 93f03df c36db17 93f03df c36db17 6aa4b02 c36db17 6aa4b02 c36db17 6aa4b02 6b6d6f7 de6ef81 5e27a0e 6b6d6f7 5e27a0e 50af927 c36db17 378ea6c 5e27a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import gradio as gr
import os
import re
from groq import Groq
import pandas as pd
import matplotlib.pyplot as plt
import io
import base64
from datetime import datetime, timedelta
import json
def validate_api_key(api_key):
"""Validate if the API key has the correct format."""
# Basic format check for Groq API keys (they typically start with 'gsk_')
if not api_key.strip():
return False, "API key cannot be empty"
if not api_key.startswith("gsk_"):
return False, "Invalid API key format. Groq API keys typically start with 'gsk_'"
return True, "API key looks valid"
def test_api_connection(api_key):
"""Test the API connection with a minimal request."""
try:
client = Groq(api_key=api_key)
# Making a minimal API call to test the connection
client.chat.completions.create(
model="llama3-70b-8192",
messages=[{"role": "user", "content": "test"}],
max_tokens=5
)
return True, "API connection successful"
except Exception as e:
# Handle all exceptions since Groq might not expose specific error types
if "authentication" in str(e).lower() or "api key" in str(e).lower():
return False, "Authentication failed: Invalid API key"
else:
return False, f"Error connecting to Groq API: {str(e)}"
# Ensure analytics directory exists
os.makedirs("analytics", exist_ok=True)
def log_chat_interaction(model, tokens_used, response_time, user_message_length):
"""Log chat interactions for analytics"""
timestamp = datetime.now().isoformat()
log_file = "analytics/chat_log.json"
log_entry = {
"timestamp": timestamp,
"model": model,
"tokens_used": tokens_used,
"response_time_sec": response_time,
"user_message_length": user_message_length
}
# Append to existing log or create new file
if os.path.exists(log_file):
try:
with open(log_file, "r") as f:
logs = json.load(f)
except:
logs = []
else:
logs = []
logs.append(log_entry)
with open(log_file, "w") as f:
json.dump(logs, f, indent=2)
def get_template_prompt(template_name):
"""Get system prompt for a given template name"""
templates = {
"General Assistant": "You are a helpful, harmless, and honest AI assistant.",
"Code Helper": "You are a programming assistant. Provide detailed code explanations and examples.",
"Creative Writer": "You are a creative writing assistant. Generate engaging and imaginative content.",
"Technical Expert": "You are a technical expert. Provide accurate, detailed technical information.",
"Data Analyst": "You are a data analysis assistant. Help interpret and analyze data effectively."
}
return templates.get(template_name, "")
def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_tokens, top_p, chat_history, template_name=""):
"""Enhanced chat function with analytics logging"""
start_time = datetime.now()
# Get system prompt if template is provided
system_prompt = get_template_prompt(template_name) if template_name else ""
# Validate and process as before
is_valid, message = validate_api_key(api_key)
if not is_valid:
return chat_history + [[user_message, f"Error: {message}"]]
connection_valid, connection_message = test_api_connection(api_key)
if not connection_valid:
return chat_history + [[user_message, f"Error: {connection_message}"]]
try:
# Format history
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": user_message})
# Make API call
client = Groq(api_key=api_key)
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p
)
# Calculate metrics
end_time = datetime.now()
response_time = (end_time - start_time).total_seconds()
tokens_used = response.usage.total_tokens
# Log the interaction
log_chat_interaction(
model=model,
tokens_used=tokens_used,
response_time=response_time,
user_message_length=len(user_message)
)
# Extract response
assistant_response = response.choices[0].message.content
return chat_history + [[user_message, assistant_response]]
except Exception as e:
error_message = f"Error: {str(e)}"
return chat_history + [[user_message, error_message]]
def clear_conversation():
"""Clear the conversation history."""
return []
def plt_to_html(fig):
"""Convert matplotlib figure to HTML img tag"""
buf = io.BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight")
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode("utf-8")
plt.close(fig)
return f'<img src="data:image/png;base64,{img_str}" alt="Chart">'
def clear_analytics():
"""Clear all analytics data by removing the log file"""
log_file = "analytics/chat_log.json"
if os.path.exists(log_file):
try:
os.remove(log_file)
return "Analytics data cleared successfully."
except Exception as e:
return f"Error clearing analytics: {str(e)}"
else:
return "No analytics data to clear."
def generate_analytics():
"""Generate analytics from the chat log"""
log_file = "analytics/chat_log.json"
if not os.path.exists(log_file):
return "No analytics data available yet.", None, None
try:
with open(log_file, "r") as f:
logs = json.load(f)
if not logs:
return "No analytics data available yet.", None, None
# Convert to DataFrame
df = pd.DataFrame(logs)
df["timestamp"] = pd.to_datetime(df["timestamp"])
# Generate usage by model chart
model_usage = df.groupby("model").agg({
"tokens_used": "sum",
"timestamp": "count"
}).reset_index()
model_usage.columns = ["model", "total_tokens", "request_count"]
fig1 = plt.figure(figsize=(10, 6))
plt.bar(model_usage["model"], model_usage["total_tokens"])
plt.title("Token Usage by Model")
plt.xlabel("Model")
plt.ylabel("Total Tokens Used")
plt.xticks(rotation=45)
plt.tight_layout()
model_usage_img = plt_to_html(fig1)
# Generate response time chart
model_response_time = df.groupby("model").agg({
"response_time_sec": "mean"
}).reset_index()
fig3 = plt.figure(figsize=(10, 6))
plt.bar(model_response_time["model"], model_response_time["response_time_sec"])
plt.title("Average Response Time by Model")
plt.xlabel("Model")
plt.ylabel("Response Time (seconds)")
plt.xticks(rotation=45)
plt.tight_layout()
response_time_img = plt_to_html(fig3)
# Summary statistics
total_tokens = df["tokens_used"].sum()
total_requests = len(df)
avg_response_time = df["response_time_sec"].mean()
# Handling the case where there might not be enough data
if not model_usage.empty:
most_used_model = model_usage.iloc[model_usage["request_count"].argmax()]["model"]
else:
most_used_model = "N/A"
summary = f"""
## Analytics Summary
- **Total API Requests**: {total_requests}
- **Total Tokens Used**: {total_tokens:,}
- **Average Response Time**: {avg_response_time:.2f} seconds
- **Most Used Model**: {most_used_model}
- **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()}
"""
return summary, model_usage_img, response_time_img
except Exception as e:
error_message = f"Error generating analytics: {str(e)}"
return error_message, None, None
# Define available models
models = [
"llama3-70b-8192",
"llama3-8b-8192",
"mistral-saba-24b",
"gemma2-9b-it",
"allam-2-7b"
]
# Define templates
templates = ["General Assistant", "Code Helper", "Creative Writer", "Technical Expert", "Data Analyst"]
# Create the Gradio interface
with gr.Blocks(title="Groq AI Chat Playground") as app:
gr.Markdown("# Groq AI Chat Playground")
# Create tabs for Chat and Analytics
with gr.Tabs():
with gr.Tab("Chat"):
# New model information accordion
with gr.Accordion("ℹ️ Model Information - Learn about available models", open=False):
gr.Markdown("""
### Available Models and Use Cases
**llama3-70b-8192**
- Meta's most powerful language model
- 70 billion parameters with 8192 token context window
- Best for: Complex reasoning, sophisticated content generation, creative writing, and detailed analysis
- Optimal for users needing the highest quality AI responses
**llama3-8b-8192**
- Lighter version of Llama 3
- 8 billion parameters with 8192 token context window
- Best for: Faster responses, everyday tasks, simpler queries
- Good balance between performance and speed
**mistral-saba-24b**
- Mistral AI's advanced model
- 24 billion parameters
- Best for: High-quality reasoning, code generation, and structured outputs
- Excellent for technical and professional use cases
**gemma2-9b-it**
- Google's instruction-tuned model
- 9 billion parameters
- Best for: Following specific instructions, educational content, and general knowledge queries
- Well-rounded performance for various tasks
**allam-2-7b**
- Specialized model from Aleph Alpha
- 7 billion parameters
- Best for: Multilingual support, concise responses, and straightforward Q&A
- Good for international users and simpler applications
*Note: Larger models generally provide higher quality responses but may take slightly longer to generate.*
""")
gr.Markdown("Enter your Groq API key to start chatting with AI models.")
with gr.Row():
with gr.Column(scale=2):
api_key_input = gr.Textbox(
label="Groq API Key",
placeholder="Enter your Groq API key (starts with gsk_)",
type="password"
)
with gr.Column(scale=1):
test_button = gr.Button("Test API Connection")
api_status = gr.Textbox(label="API Status", interactive=False)
with gr.Row():
with gr.Column(scale=2):
model_dropdown = gr.Dropdown(
choices=models,
label="Select Model",
value="llama3-70b-8192"
)
with gr.Column(scale=1):
template_dropdown = gr.Dropdown(
choices=templates,
label="Select Template",
value="General Assistant"
)
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced Settings", open=False):
temperature_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.7, step=0.01,
label="Temperature (higher = more creative, lower = more focused)"
)
max_tokens_slider = gr.Slider(
minimum=256, maximum=8192, value=4096, step=256,
label="Max Tokens (maximum length of response)"
)
top_p_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.95, step=0.01,
label="Top P (nucleus sampling probability threshold)"
)
chatbot = gr.Chatbot(label="Conversation", height=500)
with gr.Row():
message_input = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=3
)
with gr.Row():
submit_button = gr.Button("Send", variant="primary")
clear_button = gr.Button("Clear Conversation")
# Analytics Dashboard Tab
with gr.Tab("Analytics Dashboard"):
with gr.Column():
gr.Markdown("# Usage Analytics Dashboard")
with gr.Row():
refresh_analytics_button = gr.Button("Refresh Analytics")
clear_analytics_button = gr.Button("Clear Analytics", variant="secondary")
analytics_status = gr.Markdown()
analytics_summary = gr.Markdown()
with gr.Row():
with gr.Column():
model_usage_chart = gr.HTML(label="Token Usage by Model")
response_time_chart = gr.HTML(label="Response Time by Model")
# Connect components with functions
submit_button.click(
fn=enhanced_chat_with_groq,
inputs=[api_key_input, model_dropdown, message_input, temperature_slider, max_tokens_slider, top_p_slider, chatbot, template_dropdown],
outputs=chatbot
).then(
fn=lambda: "",
inputs=None,
outputs=message_input
)
message_input.submit(
fn=enhanced_chat_with_groq,
inputs=[api_key_input, model_dropdown, message_input, temperature_slider, max_tokens_slider, top_p_slider, chatbot, template_dropdown],
outputs=chatbot
).then(
fn=lambda: "",
inputs=None,
outputs=message_input
)
clear_button.click(
fn=clear_conversation,
inputs=None,
outputs=chatbot
)
test_button.click(
fn=test_api_connection,
inputs=[api_key_input],
outputs=[api_status]
)
refresh_analytics_button.click(
fn=generate_analytics,
inputs=[],
outputs=[analytics_summary, model_usage_chart, response_time_chart]
)
clear_analytics_button.click(
fn=clear_analytics,
inputs=[],
outputs=[analytics_status]
).then(
fn=generate_analytics,
inputs=[],
outputs=[analytics_summary, model_usage_chart, response_time_chart]
)
# Launch the app
if __name__ == "__main__":
app.launch(share=False) |