File size: 15,828 Bytes
50af927
378ea6c
 
 
93f03df
 
 
 
 
 
50af927
378ea6c
 
c36db17
378ea6c
 
50af927
378ea6c
 
50af927
378ea6c
 
 
 
50af927
378ea6c
c36db17
378ea6c
29cea1c
378ea6c
 
50af927
378ea6c
50af927
c36db17
5029883
 
 
 
50af927
c36db17
93f03df
 
6aa4b02
 
93f03df
 
 
 
 
 
 
 
 
6aa4b02
93f03df
 
c36db17
93f03df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa4b02
93f03df
 
 
c36db17
93f03df
 
c36db17
378ea6c
 
6aa4b02
50af927
378ea6c
 
6aa4b02
50af927
 
c36db17
378ea6c
93f03df
 
 
 
378ea6c
 
 
 
 
 
c36db17
378ea6c
 
 
 
 
 
 
50af927
378ea6c
c36db17
93f03df
 
 
 
c36db17
6aa4b02
93f03df
 
 
6aa4b02
93f03df
 
c36db17
378ea6c
 
6aa4b02
378ea6c
50af927
378ea6c
6aa4b02
378ea6c
 
 
6aa4b02
50af927
ddae684
 
 
6aa4b02
ddae684
 
 
 
 
5e27a0e
 
 
 
 
 
 
 
 
 
 
 
 
6aa4b02
 
93f03df
 
 
6b6d6f7
93f03df
 
 
 
 
 
6b6d6f7
93f03df
c36db17
93f03df
 
 
c36db17
93f03df
 
 
 
 
 
ddae684
6aa4b02
 
 
 
93f03df
ddae684
 
93f03df
c36db17
93f03df
6aa4b02
93f03df
 
ddae684
6aa4b02
 
 
 
93f03df
ddae684
 
93f03df
c36db17
93f03df
 
 
 
c36db17
ddae684
 
 
 
 
93f03df
6aa4b02
c36db17
6aa4b02
 
 
 
 
 
93f03df
6b6d6f7
93f03df
 
ddae684
6b6d6f7
93f03df
c36db17
fa4be47
378ea6c
845f4fe
 
 
 
378ea6c
 
c36db17
50168da
93f03df
c36db17
6aa4b02
5eb0488
93f03df
c36db17
93f03df
 
c36db17
93f03df
2777751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378ea6c
93f03df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50168da
93f03df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa4b02
93f03df
 
 
 
 
 
378ea6c
93f03df
 
 
 
 
c36db17
93f03df
 
6aa4b02
c1c8f91
5e27a0e
 
 
6aa4b02
5e27a0e
6aa4b02
93f03df
 
6aa4b02
 
93f03df
c36db17
93f03df
c36db17
6aa4b02
 
c36db17
6aa4b02
 
 
 
 
 
 
 
 
c36db17
6aa4b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6d6f7
de6ef81
5e27a0e
 
 
 
 
 
 
 
6b6d6f7
5e27a0e
50af927
c36db17
378ea6c
5e27a0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import gradio as gr
import os
import re
from groq import Groq
import pandas as pd
import matplotlib.pyplot as plt
import io
import base64
from datetime import datetime, timedelta
import json

def validate_api_key(api_key):
    """Validate if the API key has the correct format."""
    # Basic format check for Groq API keys (they typically start with 'gsk_')
    if not api_key.strip():
        return False, "API key cannot be empty"
    
    if not api_key.startswith("gsk_"):
        return False, "Invalid API key format. Groq API keys typically start with 'gsk_'"
    
    return True, "API key looks valid"

def test_api_connection(api_key):
    """Test the API connection with a minimal request."""
    try:
        client = Groq(api_key=api_key)
        # Making a minimal API call to test the connection
        client.chat.completions.create(
            model="llama3-70b-8192",
            messages=[{"role": "user", "content": "test"}],
            max_tokens=5
        )
        return True, "API connection successful"
    except Exception as e:
        # Handle all exceptions since Groq might not expose specific error types
        if "authentication" in str(e).lower() or "api key" in str(e).lower():
            return False, "Authentication failed: Invalid API key"
        else:
            return False, f"Error connecting to Groq API: {str(e)}"

# Ensure analytics directory exists
os.makedirs("analytics", exist_ok=True)

def log_chat_interaction(model, tokens_used, response_time, user_message_length):
    """Log chat interactions for analytics"""
    timestamp = datetime.now().isoformat()
    
    log_file = "analytics/chat_log.json"
    
    log_entry = {
        "timestamp": timestamp,
        "model": model,
        "tokens_used": tokens_used,
        "response_time_sec": response_time,
        "user_message_length": user_message_length
    }
    
    # Append to existing log or create new file
    if os.path.exists(log_file):
        try:
            with open(log_file, "r") as f:
                logs = json.load(f)
        except:
            logs = []
    else:
        logs = []
    
    logs.append(log_entry)
    
    with open(log_file, "w") as f:
        json.dump(logs, f, indent=2)

def get_template_prompt(template_name):
    """Get system prompt for a given template name"""
    templates = {
        "General Assistant": "You are a helpful, harmless, and honest AI assistant.",
        "Code Helper": "You are a programming assistant. Provide detailed code explanations and examples.",
        "Creative Writer": "You are a creative writing assistant. Generate engaging and imaginative content.",
        "Technical Expert": "You are a technical expert. Provide accurate, detailed technical information.",
        "Data Analyst": "You are a data analysis assistant. Help interpret and analyze data effectively."
    }
    
    return templates.get(template_name, "")

def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_tokens, top_p, chat_history, template_name=""):
    """Enhanced chat function with analytics logging"""
    start_time = datetime.now()
    
    # Get system prompt if template is provided
    system_prompt = get_template_prompt(template_name) if template_name else ""
    
    # Validate and process as before
    is_valid, message = validate_api_key(api_key)
    if not is_valid:
        return chat_history + [[user_message, f"Error: {message}"]]
    
    connection_valid, connection_message = test_api_connection(api_key)
    if not connection_valid:
        return chat_history + [[user_message, f"Error: {connection_message}"]]
    
    try:
        # Format history
        messages = []
        
        if system_prompt:
            messages.append({"role": "system", "content": system_prompt})
        
        for human, assistant in chat_history:
            messages.append({"role": "user", "content": human})
            messages.append({"role": "assistant", "content": assistant})
        
        messages.append({"role": "user", "content": user_message})
        
        # Make API call
        client = Groq(api_key=api_key)
        response = client.chat.completions.create(
            model=model,
            messages=messages,
            temperature=temperature,
            max_tokens=max_tokens,
            top_p=top_p
        )
        
        # Calculate metrics
        end_time = datetime.now()
        response_time = (end_time - start_time).total_seconds()
        tokens_used = response.usage.total_tokens
        
        # Log the interaction
        log_chat_interaction(
            model=model,
            tokens_used=tokens_used,
            response_time=response_time,
            user_message_length=len(user_message)
        )
        
        # Extract response
        assistant_response = response.choices[0].message.content
        
        return chat_history + [[user_message, assistant_response]]
    
    except Exception as e:
        error_message = f"Error: {str(e)}"
        return chat_history + [[user_message, error_message]]

def clear_conversation():
    """Clear the conversation history."""
    return []

def plt_to_html(fig):
    """Convert matplotlib figure to HTML img tag"""
    buf = io.BytesIO()
    fig.savefig(buf, format="png", bbox_inches="tight")
    buf.seek(0)
    img_str = base64.b64encode(buf.read()).decode("utf-8")
    plt.close(fig)
    return f'<img src="data:image/png;base64,{img_str}" alt="Chart">'

def clear_analytics():
    """Clear all analytics data by removing the log file"""
    log_file = "analytics/chat_log.json"
    
    if os.path.exists(log_file):
        try:
            os.remove(log_file)
            return "Analytics data cleared successfully."
        except Exception as e:
            return f"Error clearing analytics: {str(e)}"
    else:
        return "No analytics data to clear."

def generate_analytics():
    """Generate analytics from the chat log"""
    log_file = "analytics/chat_log.json"
    
    if not os.path.exists(log_file):
        return "No analytics data available yet.", None, None
    
    try:
        with open(log_file, "r") as f:
            logs = json.load(f)
        
        if not logs:
            return "No analytics data available yet.", None, None
        
        # Convert to DataFrame
        df = pd.DataFrame(logs)
        df["timestamp"] = pd.to_datetime(df["timestamp"])
        
        # Generate usage by model chart
        model_usage = df.groupby("model").agg({
            "tokens_used": "sum",
            "timestamp": "count"
        }).reset_index()
        model_usage.columns = ["model", "total_tokens", "request_count"]
        
        fig1 = plt.figure(figsize=(10, 6))
        plt.bar(model_usage["model"], model_usage["total_tokens"])
        plt.title("Token Usage by Model")
        plt.xlabel("Model")
        plt.ylabel("Total Tokens Used")
        plt.xticks(rotation=45)
        plt.tight_layout()
        model_usage_img = plt_to_html(fig1)
        
        # Generate response time chart
        model_response_time = df.groupby("model").agg({
            "response_time_sec": "mean"
        }).reset_index()
        
        fig3 = plt.figure(figsize=(10, 6))
        plt.bar(model_response_time["model"], model_response_time["response_time_sec"])
        plt.title("Average Response Time by Model")
        plt.xlabel("Model")
        plt.ylabel("Response Time (seconds)")
        plt.xticks(rotation=45)
        plt.tight_layout()
        response_time_img = plt_to_html(fig3)
        
        # Summary statistics
        total_tokens = df["tokens_used"].sum()
        total_requests = len(df)
        avg_response_time = df["response_time_sec"].mean()
        
        # Handling the case where there might not be enough data
        if not model_usage.empty:
            most_used_model = model_usage.iloc[model_usage["request_count"].argmax()]["model"]
        else:
            most_used_model = "N/A"
        
        summary = f"""
        ## Analytics Summary
        
        - **Total API Requests**: {total_requests}
        - **Total Tokens Used**: {total_tokens:,}
        - **Average Response Time**: {avg_response_time:.2f} seconds
        - **Most Used Model**: {most_used_model}
        - **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()}
        """
        
        return summary, model_usage_img, response_time_img
    
    except Exception as e:
        error_message = f"Error generating analytics: {str(e)}"
        return error_message, None, None

# Define available models
models = [
    "llama3-70b-8192",
    "llama3-8b-8192",
    "mistral-saba-24b",
    "gemma2-9b-it",
    "allam-2-7b"
]

# Define templates
templates = ["General Assistant", "Code Helper", "Creative Writer", "Technical Expert", "Data Analyst"]

# Create the Gradio interface
with gr.Blocks(title="Groq AI Chat Playground") as app:
    gr.Markdown("# Groq AI Chat Playground")
    
    # Create tabs for Chat and Analytics
    with gr.Tabs():
        with gr.Tab("Chat"):
            # New model information accordion
            with gr.Accordion("ℹ️ Model Information - Learn about available models", open=False):
                gr.Markdown(""" 
                ### Available Models and Use Cases
                
                **llama3-70b-8192**
                - Meta's most powerful language model
                - 70 billion parameters with 8192 token context window
                - Best for: Complex reasoning, sophisticated content generation, creative writing, and detailed analysis
                - Optimal for users needing the highest quality AI responses
                
                **llama3-8b-8192**
                - Lighter version of Llama 3
                - 8 billion parameters with 8192 token context window
                - Best for: Faster responses, everyday tasks, simpler queries
                - Good balance between performance and speed
                
                **mistral-saba-24b**
                - Mistral AI's advanced model
                - 24 billion parameters
                - Best for: High-quality reasoning, code generation, and structured outputs
                - Excellent for technical and professional use cases
                
                **gemma2-9b-it**
                - Google's instruction-tuned model
                - 9 billion parameters
                - Best for: Following specific instructions, educational content, and general knowledge queries
                - Well-rounded performance for various tasks
                
                **allam-2-7b**
                - Specialized model from Aleph Alpha
                - 7 billion parameters
                - Best for: Multilingual support, concise responses, and straightforward Q&A
                - Good for international users and simpler applications
                
                *Note: Larger models generally provide higher quality responses but may take slightly longer to generate.*
                """)
            
            gr.Markdown("Enter your Groq API key to start chatting with AI models.")
            
            with gr.Row():
                with gr.Column(scale=2):
                    api_key_input = gr.Textbox(
                        label="Groq API Key", 
                        placeholder="Enter your Groq API key (starts with gsk_)",
                        type="password"
                    )
                    
                with gr.Column(scale=1):
                    test_button = gr.Button("Test API Connection")
                    api_status = gr.Textbox(label="API Status", interactive=False)
            
            with gr.Row():
                with gr.Column(scale=2):
                    model_dropdown = gr.Dropdown(
                        choices=models,
                        label="Select Model",
                        value="llama3-70b-8192"
                    )
                with gr.Column(scale=1):
                    template_dropdown = gr.Dropdown(
                        choices=templates,
                        label="Select Template",
                        value="General Assistant"
                    )
            
            with gr.Row():
                with gr.Column():
                    with gr.Accordion("Advanced Settings", open=False):
                        temperature_slider = gr.Slider(
                            minimum=0.0, maximum=1.0, value=0.7, step=0.01,
                            label="Temperature (higher = more creative, lower = more focused)"
                        )
                        max_tokens_slider = gr.Slider(
                            minimum=256, maximum=8192, value=4096, step=256,
                            label="Max Tokens (maximum length of response)"
                        )
                        top_p_slider = gr.Slider(
                            minimum=0.0, maximum=1.0, value=0.95, step=0.01,
                            label="Top P (nucleus sampling probability threshold)"
                        )
            
            chatbot = gr.Chatbot(label="Conversation", height=500)
            
            with gr.Row():
                message_input = gr.Textbox(
                    label="Your Message",
                    placeholder="Type your message here...",
                    lines=3
                )
            
            with gr.Row():
                submit_button = gr.Button("Send", variant="primary")
                clear_button = gr.Button("Clear Conversation")
            
        # Analytics Dashboard Tab
        with gr.Tab("Analytics Dashboard"):
            with gr.Column():
                gr.Markdown("# Usage Analytics Dashboard")
                
                with gr.Row():
                    refresh_analytics_button = gr.Button("Refresh Analytics")
                    clear_analytics_button = gr.Button("Clear Analytics", variant="secondary")
                
                analytics_status = gr.Markdown()
                analytics_summary = gr.Markdown()
                
                with gr.Row():
                    with gr.Column():
                        model_usage_chart = gr.HTML(label="Token Usage by Model")
                
                response_time_chart = gr.HTML(label="Response Time by Model")
    
    # Connect components with functions
    submit_button.click(
        fn=enhanced_chat_with_groq,
        inputs=[api_key_input, model_dropdown, message_input, temperature_slider, max_tokens_slider, top_p_slider, chatbot, template_dropdown],
        outputs=chatbot
    ).then(
        fn=lambda: "",
        inputs=None,
        outputs=message_input
    )
    
    message_input.submit(
        fn=enhanced_chat_with_groq,
        inputs=[api_key_input, model_dropdown, message_input, temperature_slider, max_tokens_slider, top_p_slider, chatbot, template_dropdown],
        outputs=chatbot
    ).then(
        fn=lambda: "",
        inputs=None,
        outputs=message_input
    )
    
    clear_button.click(
        fn=clear_conversation,
        inputs=None,
        outputs=chatbot
    )
    
    test_button.click(
        fn=test_api_connection,
        inputs=[api_key_input],
        outputs=[api_status]
    )
    
    refresh_analytics_button.click(
        fn=generate_analytics,
        inputs=[],
        outputs=[analytics_summary, model_usage_chart, response_time_chart]
    )
    
    clear_analytics_button.click(
        fn=clear_analytics,
        inputs=[],
        outputs=[analytics_status]
    ).then(
        fn=generate_analytics,
        inputs=[],
        outputs=[analytics_summary, model_usage_chart, response_time_chart]
    )

# Launch the app
if __name__ == "__main__":
    app.launch(share=False)